Cho x,y,z >0 và \(x^2+y^2+z^2=1\)
Chứng minh \(\frac{1}{x^2+yz}+\frac{1}{y^2+xz}+\frac{1}{z^2+xy}\ge\frac{1}{2}\)
Cho x,y,z > 0 thỏa mãn xy + yz +zx = 1.Chứng minh
\(\frac{x-y}{z^2+1}\)+\(\frac{y-z}{x^2+1}\)+\(\frac{z-x}{y^2+1}\)=0
Chứng minh rằng nếu \(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\) với x khác y, yz,xz khác 1, x, y, z khác 0 thì \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Cho: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)(x,y,z khác 0). Tính \(\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}\)
Chứng minh rằng :
\(\frac{x-y}{1+xy}+\frac{y-z}{1+yz}+\frac{z-x}{1+xz}=\frac{\left(x-y\right)\left(y-z\right)\left(z-x\right)}{\left(1+xy\right)\left(1+yz\right)\left(1+xz\right)}\)
a, Chứng minh rằng \(x^3+y^3+z^3=\left(x+y\right)^3-3xy.\left(x+y\right)+z^3\)
\(b,\)Cho \(\frac{1}{x}+\frac{1}{y} +\frac{1}{z}=0\)Tính \(A=\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}\)
Cho a,b,c >0. Chứng minh rằng:
\(\frac{1}{x^2+yz}\)\(+\frac{1}{y^2+xz}+\frac{1}{z^2+xy}\le\frac{1}{2}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)\)
cho x,y,z khác 0 và x+y+z=0
chứng minh rằng
\(\frac{x^2+y^2}{x+y}+\frac{y^2+z^2}{y+z}+\frac{x^2+z^2}{x+z}=\frac{x^3}{yz}+\frac{y^3}{xz}+\frac{z^3}{xy}\)
cho \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\left(x,y,z\ne0\right).\)
Tính \(\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}\)