Cho x>0;y>0;z>0 thỏa mãn \(x^{2015}+y^{2015}+z^{2015}=3\)
Tìm giá trị lớn nhất của biểu thức :\(M=x^2+y^2+z^2\)
Cho 3 số x,y,z khác 0 thỏa mãn x+y+z=1 và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\) Tính giá trị của biểu thức P=\(\left(x^{2015}-1\right)\times\left(y^{2015}-1\right)\times\left(z^{2015}-1\right)\)
Cho x,y,z là 3 số khác 0 thỏa mãn x+y+z=1 và 1/x+1/y+1/y=1 tính giá trị biểu thức P=(x^2015-1)(y^2015-1)(z^2015 -1) Mọi người giải nhanh giúp mình nha cảm ơn !!!!
Cho x;y; z thỏa mãn 1/x + 1/y + 1/z= 1/2015; x + y+ z = 2015
Chứng minh trong 3 số x;y;z có ít nhất 1 số = 2015
cho x2+y2+z2=3,x,y,z>0 tìm min A=\(\dfrac{1}{x+2}\)+\(\dfrac{1}{y+2}\)+\(\dfrac{1}{z+2}\)
Cho 3 số dương x , y , z thỏa mãn điều kiện :
\(xy+yz+zx=2015\) và :
\(P=x\sqrt{\frac{\left(2015+y^2\right)\left(2015+z^2\right)}{2015+x^2}+y\sqrt{\frac{\left(2015+x^2\right)\left(2015+z^2\right)}{2015+y^2}}+z\sqrt{\frac{\left(2015+x^2\right)\left(2015+y^2\right)}{2015+z^2}}}\)
Chứng minh rằng P không phải là số chính phương .
cho x,y,z>0 thỏa mãn: x2+yz+z2=1-\(\dfrac{3x^2}{z}\).
Tìm GTNN và GTLN của P= x+y+z
Cho 3 số thực dương x, y, z thỏa mãn: 1 x 2 + 1 y 2 + 1 z 2 = 1 . Tìm giá trị nhỏ nhất của biểu thức: P = y 2 z 2 x ( y 2 + z 2 ) + z 2 x 2 y ( z 2 + x 2 ) + x 2 y 2 z ( x 2 + y 2 )
cho x,y,z thỏa mãn : 4x^2 +2y^2 +2z^2 -4xy-4xz+2yz -6x -10z +34=0
tính: \(\left(x-4\right)^{2015}+\left(y-4\right)^{2015}+\left(z-4\right)^{2015}\)