Ta cm được: \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
\(A=x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge\frac{\left(xy+yz+zx\right)^2}{3}=\frac{1}{3}\)
Min A = 1/3 khi và chỉ khi \(x=y=z=\frac{1}{\sqrt{3}}\)
Ta cm được: \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
\(A=x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge\frac{\left(xy+yz+zx\right)^2}{3}=\frac{1}{3}\)
Min A = 1/3 khi và chỉ khi \(x=y=z=\frac{1}{\sqrt{3}}\)
Cho các số thực dương x,y,z thỏa mãn: xy+yz+zx=3. Tìm GTNN của:
\(P=\frac{x^4}{y+3z}+\frac{y^4}{z+3x}+\frac{z^4}{z+3y}\)
cho x,y,z thỏa măn xy+yz+zx=2006.TÍnh GTNN của P=x^4+y^4+z^4
chi các số thực dương x,y,z thỏa mãn \(x^4+y^4+z^4=3\)
Tìm GTNN của T=\(\sqrt{\dfrac{yz}{7-2x}}+\sqrt{\dfrac{zx}{7-2y}}+\sqrt{\dfrac{xy}{7-2z}}\)
Cho x, y, z là các số dương thỏa mãn \(xy+yz+zx=\dfrac{9}{4}\)
Tìm gtnn P=\(x^2+14y^2+10z^2-4.\sqrt{2y}\)
1) Cho ba số x, y, z thỏa mãn:
xy + yz + zx = 8
x + y + z = 5
Tìm GTNN, GTLN của x.
2) Cho ba số x, y, z thỏa mãn:
xy + yz + zx = 1
\(x^2+y^2+z^2=2\)
Cho x,y,z dương thỏa mãn xy +yz+zx+2xyz =1 .Chứng minh :1/x+1/y+1/z >= 4*(x+y+z)
cho các số x,y,z là các số thực dương thỏa mãn x + y+z + xy + yz + zx = 6
GTNN của biểu thức x² + y² + z² = ?
cho \(x,y,z>0\) thỏa mãn\(\left(x+y\right)\left(y+z\right)\left(z+x\right)=1\).CMR
\(xy+yz+zx\le\dfrac{3}{4}\)
cho \(x\ge1;y\ge1;z\ge1\) thỏa mãn xy+yz+zx = 9
tìm GTNN và GTLN của P = \(x^2+y^2+z^2\)
cảm ơn trc