Tìm x, y, z biết
4x2 + 9y2 + 16z2 - 4x - 6y - 8z + 3 = 0
Câu 31:
b) Tìm x, y, z biết: \(4x^2-4x+9y^2-6y+16z^2-8z+3=0\)
cho ba số thực x,y,z thỏa mãn xy+yz+zx=xyz. tìm giá trị nhỏ nhất của biểu thức H=\(\dfrac{x^2}{9z+zx^2}\)+\(\dfrac{y^2}{9x+xy^2}\)+\(\dfrac{z^2}{9y+yz^2}\)
Cho x , y , z là 3 số dương thỏa mãn 4x + 9y + 16z = 49 CMR: T = 1/x + 25/y + 64/z \(\ge49\)
1.Tính giá trị của biểu thức 4z-2y+1999 biết rằng y,z thỏa mãn điều kiện \(y^3-9y^2+27y=8z^3+27\)
2.Tìm m sao cho đa thức x-2 là ước của đa thức \(x^3+4x^2+5x-m\)
Cho x,y,z thỏa mãn 4x^2+4z^2=17;4y(x+2)=5;20y^2+27=-16z
Tính giá trị của biểu thức A=30x+4y+2017z
Tồn tại hay không các số thực x,y,z thỏa mãn đẳng thức: x²+4y²+z²-4x+4y-8z+24=0?
Cho x,y,z thỏa mãn xy+yz+zx=5. Tìm giá trị nhỏ nhất của biểu thức 3x^2 + 3y^2 +z^2
cho x,y,z khác 0 thỏa mãn \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\) = 0 Tính giá trì của biểu thức N= \(\frac{x^2}{yz}+\frac{y^2}{zx}+\frac{z^2}{xy}\)