Cho \(x,y,z\ne0\); đôi một cùng dấu thỏa mãn: \(\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)=8\)
Tính \(M=\frac{x^2}{y^2+z^2}+\frac{y^2}{z^2+x^2}+\frac{z^2}{x^2+y^2}\)
Cho 3 số x y z khác 0 thoả mãn 1/x+1/y+1/z=2 và 1/x^2+1/y^2+1/z^2=2. Chứng minh x+y+z=xyz
cho 3 số thực xyz khác 0 thoả mãn (x+y+z)^2=x^2+y^2+z^2 chứng minh rằng 1/x+1/y+1/z=0
Cho x,y,z khác 0 thoả mãn 1/x + 1/y +1/z = 2 và 2/dự - 1/z2
Tính D=(x+2y+z)2018
Cho x,y,z là số thực dương khác 0 thoả mãn (1/x+1/y+1/z)^2=1/x^2+1/y^2+1/z^2
Chứng minh rằng x^3+y^3+z^3=3xyz
cho x,y,z khác 0 và x khác y khác z , thỏa mãn :
x^2 -xy = y^2-yz = z^2 - zx = a
1 ) cmr : a khác 0
2) cmr ; 1/x + 1/y + 1/z = 0
3 ) tính M = x/z + z/y + y /x
cho x ,y,z khác 0 thỏa mãn x+y+z=0 Tính giá trị của biểu thức M=\(\frac{1}{x^2+y^2-z^2}+\frac{1}{y^2+z^2-x^2}+\frac{1}{x^2+z^2-y^2}\)
giải bài toán sau:cho 3 số thực xyz khác 0 thoả mãn (x+y+z)^2=x^2+y^2+z^2 chứng minh rằng 1/x+1/y+1/z=0
Cho x, y, z khác 0 thỏa mãn: x*(x^2−1/y−1/z) + y(y^2−1/z−1/x) + z(z^2−1/x−1/y) = 3 Tính : 1x+1y+1z