cho x,y,z >0;xyz=1.Chứng minh rằng x3/2y+1+y3/2z+1+z3/2x+1
cho x,y,z >0;xyz=1.Chứng minh rằng x3/(y+1)(z+1)+y3/(z+1)(x+1)+x3/(y+1)(z+1)≥3/4
Cho x,y,z>=-1 và x3 +y3 +z3 =0.Chứng minh rằng x+y+z<1
Cho xyz = 1 và x+y+z = 1/x+1/y+1/z = 0
Tính giá trị M = (x6+y6+z6)/(x3+y3+z3)
CMR
a) xyz≠0, 1/x+1/y+1/z=0 thì (x2y2+y2z2+z2x2)2=2(x4y4+y4z4+z4x4)
b) x+y+z=0 thì x3+y3+z3-3xyz=0
Cho x,y,z dương thoả xyz=1.chứng minh x^2y^2/(2x^2+y^2+3x^2y^2) + y^2z^2/(2y^2+z^2+3y^2z^2) + z^2x^2/2z^2+x^2+3z^2x^2 <= 1/2
help
Cho các số dương x;y;z thỏa mãn \(xyz=1\) . Chứng minh rằng :
\(\frac{x^2y^2}{2x^2+y^2+3x^2y^2}+\frac{y^2z^2}{2y^2+z^2+3y^2z^2}+\frac{x^2z^2}{2z^2+x^2+3z^2x^2}\le\frac{1}{2}\)
Cho biểu thức :
B = x3 + x2z + y2z - xyz + y3
a) hãy phân tích B thành nhân tử
b) chứng minh rằng nếu x+y+z=1 thì B \(\ge\) 0
Cho các số thực x, y , z thỏa mãn 2 điều kiện :
a) (x + y) ( y + z)( z + x) = xyz
b) (x3 + y3 ) (y3 + z3) ( x3 + z3) = x3y3z3
CMR: xyz =0