cho x,y,z đôi một khác nhau và 1/x+1/y+1/z=0
tính giá trị của biểu thức A=(yz/x^2+yz)+(xz/y^2+2xz)+(xy/z^2+2xy)
Cho x y z đôi một khác nhau và 1/x+1/y+1/z=0
Tính giá trị A = yz/x^2+2yz + xz/y^2+2xz + xy/z^2+2xy
cho x; y; z thỏa mãn x^2 + y^2 +z^2 = 1. Tìm giá trị nhỏ nhất của xy +yz+2.zx?
Em có bài này, trong sách nó bảo dùng dùng tham số vào để giải, nhưng ... Mọi người giúp với ạ ...
Cho x, y, z > 0 thỏa mãn xy + yz + zx = 1. Tìm giá trị nhỏ nhất của biểu thức A = 2x2 + y2 + z2
Cho x,y,z là các số khác 0 và đôi một khác nhau thỏa mãn 1/x +1/y + 1/z =0
Tính giá trị biểu thức A=yz/(x^2 +2yz) + xz/(y^2+ 2xz) + xy/(z^2+ 2xy)
cho x,y,z đôi một khác nhau và 1/x+1/y+1/z=0. tính giá trị của biểu thức: A=\(\frac{yz}{x^2+2yz}+\frac{xz}{y^2+2xz}+\frac{xy}{z^2+2xy}\)
cho x,y,z đôi 1 khác nhau và 1/x+1/y+1/z=0
tính giá trị biểu thức B = \(\frac{yz}{x^2+2yz}+\frac{xz}{y^2+2xz}+\frac{xy}{z^2+2xy}\)
cho x,y,z là các số khác 0 thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
tính giá trị của P = \(\frac{yz}{x^2+2yz}+\frac{xz}{y^2+2xz}+\frac{xy}{z^2+xy}\)
cho x y z thõa mãn x+y+z+xy+yz+zx = 6 .tính giá trị nhỏ nhất của x^2 +y^2+ z^2
giúp vs ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !