cho x;y;z>0 c/m
\(\frac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}+\frac{y}{y+\sqrt{\left(y+x\right)\left(y+z\right)}}+\frac{z}{z+\sqrt{\left(z+x\right)\left(z+y\right)}}
cho x;y;z>0 c/m
\(\frac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}+\frac{y}{y+\sqrt{\left(y+x\right)\left(y+z\right)}}+\frac{z}{z+\sqrt{\left(z+x\right)\left(z+y\right)}}<=1\)
Cho x y z > 0. Tìm GTLN của \(P=\frac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}+\frac{y}{y+\sqrt{\left(y+z\right)\left(y+x\right)}}+\frac{z}{z+\sqrt{\left(z+x\right)\left(z+y\right)}}\)
Cho x, y, z > 0 và khác nhau đôi một. Tính: \(P=\frac{x}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{z}\right)}+\frac{y}{\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{x}\right)}+\frac{z}{\left(\sqrt{z}-\sqrt{x}\right)\left(\sqrt{z}-\sqrt{y}\right)}\)
Chứng minh đẳng thức:
\(\frac{x}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{z}\right)}+\frac{y}{\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{x}\right)}+\frac{z}{\left(\sqrt{z}-\sqrt{x}\right)\left(\sqrt{z}-\sqrt{y}\right)}=1\)(với x,y,z > 0 và từng đôi một khác nhau)
ta có : \(x^2+1=x^2+xy+yz+zx=x\left(x+y\right)+z\left(x+y\right)=\left(x+y\right)\left(x+z\right)\)
Tương tự ta đc \(y^2+1=\left(y+x\right)\left(y+z\right)\)
\(z^2+1=\left(z+x\right)\left(z+y\right)\)
ĐẶt \(A=x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{\left(1+x^2\right)}}+y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{\left(1+y^2\right)}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{\left(1+z^2\right)}}\)
\(\Rightarrow A=x\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}+y\sqrt{\frac{\left(z+x\right)\left(z+y\right)\left(x+y\right)\left(x+z\right)}{\left(x+y\right)\left(y+z\right)}}+z\sqrt{\frac{\left(x+y\right)\left(x+z\right)\left(y+z\right)\left(y+x\right)}{\left(z+x\right)\left(z+y\right)}}\)
\(\Rightarrow A=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)=2\left(xy+yz+zx\right)=2\)
Cho x, y, z >0, x+y+z=2018. C/m biểu thức sau không phụ thuộc vào x:
m = x.\(\sqrt{\frac{\left(y^2+2018\right).\left(z^2+2018\right)}{x^2+2018}}+y.\sqrt{\frac{\left(x^2+2018\right).\left(z^2+2018\right)}{y^2+2018}}+z.\sqrt{\frac{\left(x^2+2018\right).\left(y^2+2018\right)}{z^2+2018}}\)
P=\(\frac{x}{\left(\sqrt{x-\sqrt{y}}\right).\left(\sqrt{x-\sqrt{z}}\right)}+\frac{y}{\left(\sqrt{y-\sqrt{z}}\right).\left(\sqrt{y-\sqrt{x}}\right)}+\frac{z}{\left(\sqrt{z-\sqrt{y}}\right).\left(\sqrt{z-\sqrt{y}}\right)}\)
Cho x,y,z>0 và khác nhau đôi một.Chứng minh rằng giá trị của biểu thức Pkhông phụ thuộcvào giá trị của biến.
Cho x, y, z > 0 và x + y + z = 2019.
Tìm giá trị nhỏ nhất của biểu thức :
\(A=\sqrt{\left(x+y\right)\left(y+z\right)\left(z+x\right)}.\left(\frac{\sqrt{y+z}}{x}+\frac{\sqrt{z+x}}{y}+\frac{\sqrt{x+y}}{z}\right)\)