Ta có x^3 + y^3 = ( x + y )(x^2 - xy + y^2 ) (1)
( x+ y )^2 = a^2
=> x^2 + 2xy + y^2 = a^2
=> b + 2xy = a^2
=> 2xy = a^2 - b
=> xy = \(\frac{a^2-b}{2}\)
Thay vào (1) ta có
x^3 + y^3 = ( x + y)( x^2 - xy + y^2 ) = a ( b - \(\frac{a^2-b}{2}\) ) = \(a.\left(\frac{2b-a^2+b}{2}\right)=a\cdot\frac{3b-a^2}{2}\)