P = x3 + y3 - x2 - y2 + 3xy( x + y ) - 2xy + 3( x + y ) + 10
= ( x3 + y3 ) - ( x2 + 2xy + y2 ) + 3xy( x + y ) + 3.5 + 10
= ( x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 ) - ( x + y )2 + 3xy( x + y ) + 15 + 10
= [ ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 ) ] - 52 + 3xy( x + y ) + 25
= ( x + y )3 - 3xy( x + y ) - 25 + 3xy( x + y ) + 25
= 53 = 125