b1: rút gọn biểu thức:
\(A=\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{\left(7.\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}\)
b2: tìm x, y, z thỏa mãn:
\(\sqrt{\left(x-\sqrt{2}\right)^2}_{ }\)+ \(\sqrt{\left(y+\sqrt{2}\right)^2}^{ }\)+ |x+y+z| = 0
nhanh nhé, ai đúng mk t*** cho !!!
cho các số thực x,y,z thỏa mãn \(\left(x-y +z\right)^2\)+\(\sqrt{y^4}\)+\(\left|1-z^3\right|\) \(\le\) 0
Chứng minh rằng \(x^{2023}\)+\(y^{2024}\)+\(z^{2025}\)=0
Cho các số dương x,y,z . Chứng minh BĐT :
\(\frac{\left(x+1\right)\left(y+1\right)^2}{3\sqrt[3]{z^2x^2}+1}+\frac{\left(y+1\right)\left(z+1\right)^2}{3\sqrt[3]{x^2y^2}+1}+\frac{\left(z+1\right)\left(x+1\right)^2}{3\sqrt[3]{y^2z^2}+1}\ge x+y+z+3\)
ko bt lm thi đừng CMT tầm bậy nhé !
1) Rút gọn biểu thức theo là cách hợp lý:
A = \(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{\left(7\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}\)
2) Tính hợp lý:
M = \(1-\frac{5}{\sqrt{196}}-\frac{5}{\left(2\sqrt{21}\right)^2}-\frac{\sqrt{25}}{204}-\frac{\left(\sqrt{5}\right)^2}{374}\)
3) Có hay không giá trị của x thỏa mãn điều kiện sau:
\(2002.\sqrt{\left(1+x\right)^2}+2003.\sqrt{\left(1-x\right)^2}=0\)
4) Tìm các số x, y, z thỏa mãn đẳng thức:
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)
So sánh các số x và y, nếu
a)\(x=\sqrt{961}-\left(\frac{1}{\sqrt{6}}-1\right)\)và \(y=\sqrt{1089}-\left(\frac{1}{\sqrt{7}}+1\right)\)
b) \(\sqrt{0,01}+\sqrt{0,04}+\sqrt{0,09}+\sqrt{0,16}+...+\sqrt{0,81}\)và \(y=\sqrt{20+0,25}\)
c) \(x=\left(1-\frac{1}{\sqrt{4}}\right).\left(1-\frac{1}{\sqrt{16}}\right).\left(1-\frac{1}{\sqrt{36}}\right).\left(1-\frac{1}{\sqrt{64}}\right).\left(1-\frac{1}{\sqrt{100}}\right)\)và\(y=\sqrt{0,1}\)
\(Cho\)\(x=\left(1+\frac{1}{\sqrt{1}}\right)+\left(1+\frac{1}{\sqrt{9}}\right)+\left(\frac{1}{\sqrt{25}}\right)+\left(1+\frac{1}{\sqrt{49}}\right)+\left(1+\frac{1}{\sqrt{81}}\right)\)
\(y=\left(1+\frac{1}{\sqrt{4}}\right)+\left(1+\frac{1}{\sqrt{16}}\right)+\left(1+\frac{1}{\sqrt{36}}\right)+\left(1+\frac{1}{\sqrt{64}}\right)+\left(1+\frac{1}{\sqrt{100}}\right)\)
Tính x.y
Mn ơi, giúp mk nha, mai mk nộp òi!
Cho x,y,z thỏa:
\(\sqrt{\left(2x-\sqrt{16}\right)^2}+\left(y^2\sqrt{ }64\right)^2+\left|x+y+z\right|=0\)
Tìm x,y,z
) Tính giá trị của biểu thức sau bằng các hợp lý : A=\(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{\left(7\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}\)
b) Tính: B=\(\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+3+...+2017}\right)\)
c) Giả sử x+y+z=2017 và \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=\frac{1}{672}\)
TÍNH tổng C=\(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\)
d) Cho ba sô x,y,z thỏa mãn xyz=2017
Tính tổng: D= \(\frac{2017x}{xy+2017x+2017}+\frac{y}{yz+y+2017}+\frac{z}{zx+z+1}\)
a) cho C = 3 - \(3^2+3^3-3^4+3^5-3^6+...+3^{23}-3^{24}\), chứng minh rằng C \(⋮\) 420
b) tìm x và y biết \(\left(x+1\right)^{2022}+\left(\sqrt{y-1}\right)^{2023}=0\)