\(S=\frac{\left(x+y\right)^2}{xy}+\frac{\left(x+y\right)^2}{x^2+y^2}=\frac{x^2+y^2+2xy}{xy}+\frac{x^2+y^2+2xy}{x^2+y^2}=\frac{x^2+y^2}{xy}+\frac{2xy}{x^2+y^2}+3\)
\(=\frac{x^2+y^2}{2xy}+\frac{2xy}{x^2+y^2}+\frac{x^2+y^2}{2xy}+3\)
\(\ge2\sqrt{\frac{x^2+y^2}{2xy}.\frac{2xy}{x^2+y^2}}+\frac{2xy}{2xy}+3=6\)
Dấu "=" xảy ra khi x = y.
Vậy GTNN của S là 6.