Cho x, y >0 thỏa mãn: \(x^2+y^2\le x+y\). Chứng minh \(x+2y\le\frac{3}{2}+\frac{\sqrt{10}}{2}\)
CMR: bất đẳng thức:
\(\frac{x+y}{x^2-xy+y^2}\le\frac{2\sqrt{2}}{\sqrt{x^2+y^2}}\)
thỏa mãn với mọi x,y thuộc R;x,y khác 0
Cho các số thực dương x,y thỏa mãn xy = 4 .Chứng minh x + y \(\ge\)4 và \(\frac{1}{x+3}+\frac{1}{y+3}\)\(\le\frac{2}{5}\)
Chứng minh rằng :
\(\frac{3-\sqrt{10}}{2}\le F=x+2y\le\frac{3+\sqrt{10}}{2}\) trong đó x, y là 2 số thực thỏa mãn \(x^2+y^2=x+y\)
Giup mình bài này với. Cho x,y thuộc R thỏa mãn x^2 + 4y^2=1. Chứng minh /x-y/ <= ( căn 5)/2
Giup mình bài này với. Cho x,y thuộc R thỏa mãn x^2 + 4y^2=1. Chứng minh /x-y/ <= ( căn 5)/2
Cho các số thực dương x,y,z thỏa mãn x+y+z \(\le\)1.Chứng minh \(\frac{1}{xz}+\frac{1}{yz}\ge\)16
Cho các số thực dương x,y thỏa mãn xy = 4 .Chứng minh x + y \(\ge\)4 và \(\frac{1}{x+3}+\frac{1}{y+3}\)\(\le\frac{2}{5}\)
1,Cho x,y thuộc R thỏa mãn :3x+4y=5.tính giá trị nhỏ nhất của x^2+y^2
2,Cho a-b=1.Chứng minh a^2+b^2>=1/2