Ta có: \(x^2+y^2=\left(x+y\right)^2-2xy=\left(-1\right)^2-2.\left(-2\right)=5\)
\(\Rightarrow B=x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=\left(-1\right)\left(5+2\right)=-7\)
\(\left(x-y\right)^2=x^2+y^2-2xy=5-2.\left(-2\right)=9\)
\(\Rightarrow x-y=-3;3\)
\(\Rightarrow C=x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=3.\left(5-2\right)=9\)
hoặc \(C=\left(x-y\right)\left(x^2+xy+y^2\right)=-3.\left(5-2\right)=-9\)
\(D=x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=25-8=17\)
\(E=x^4-y^4=\left(x^2\right)^2-\left(y^2\right)^2=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)=\left(-3\right)\left(-1\right).5=15\)
hoặc \(E=3.\left(-1\right).5=-15\)
1)B= x3 +y3
=x3+3x2y+3xy2+y3-3x2y-3xy2
=(x+y)3-3xy.(x+y)
=(-1)3-3.(-2).(-1)
=-1-6
=-7
2) ta có:
x2+y2=x2+2xy+y2-2xy
=(x+y)2-2xy
=(-1)2-2.(-2)
=1+4
=5
=>(x-y)2=x2-2xy+y2
=5-2.(-2)
=5+4
=9
=>x-y=3 hoặc x-y=-3
Với x-y=3 thì:
x3-y3=(x-y)(x2+xy+y2)
=3.(5-2)
=3.3=9
Với x-y=-3 thì :
x3-y3=(x-y)(x2+xy+y2)
=-3.(5-2)
=-3.2=-9