Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tyson Clausen

Cho xOy, trên tia Ox lấy điểm A và B,trên tia Oy lấy 2 điểm C và D sao cho OA = OC, OB = OD
a, chứng minh rằng tam giác OAD = tam giác OCB
b, Gọi I là giao điểm của AD và BC. Chứng minh rằng tam giác AIB = tam giác CID
c,Chứng minh OI là tia phân giác của xOy

Nguyễn Lê Phước Thịnh
24 tháng 11 2023 lúc 14:01

a: Xét ΔOAD và ΔOCB có

OA=OC

\(\widehat{AOD}\) chung

OD=OB

Do đó: ΔOAD=ΔOCB

b: ΔOAD=ΔOCB

=>AD=CB và \(\widehat{OAD}=\widehat{OCB};\widehat{ODA}=\widehat{OBC}\)

\(\widehat{OAD}+\widehat{BAD}=180^0\)(hai góc kề bù)

\(\widehat{OCB}+\widehat{DCB}=180^0\)(hai góc kề bù)

mà \(\widehat{OAD}=\widehat{OCB}\)

nên \(\widehat{BAD}=\widehat{DCB}\)

=>\(\widehat{IAB}=\widehat{ICD}\)

OA+AB=OB

OC+CD=OD

mà OA=OC và OB=OD

nên AB=CD

Xét ΔIAB và ΔICD có

\(\widehat{IAB}=\widehat{ICD}\)

AB=CD

\(\widehat{IBA}=\widehat{IDC}\)

Do đó: ΔIAB=ΔICD

c: ΔIAB=ΔICD

=>ID=IB

Xét ΔOIB và ΔOID có

OI chung

IB=ID

OB=OD

Do đó: ΔOIB=ΔOID

=>\(\widehat{BOI}=\widehat{DOI}\)

=>OI là phân giác của góc DOB

=>OI là phân giác của \(\widehat{xOy}\)


Các câu hỏi tương tự
Tyson Clausen
Xem chi tiết
Lê An Huệ
Xem chi tiết
Phạm Thảo Linh
Xem chi tiết
Minhtrangpig113@gmail.co...
Xem chi tiết
Võ Ngọc Trâm
Xem chi tiết
Phan Thị Minh Thuyết
Xem chi tiết
Trần Thanh Lâm
Xem chi tiết
Diệp Hải Uyên
Xem chi tiết
phan phuong ngan
Xem chi tiết