cho ^xOy có Oz là phân giác.Trên Ox lấy A,B và trên Oy lấy C,D sao cho A thuộc OB và C thuộc OD và AB=CD.GỌi M,N lần lượt là trung điểm AC,BD.CM MN//Oz.
Cho góc XOY. Trên tia Ox lần lượt lấy 2 điểm A và B sao cho OA=4cm,AB=2cm, trên tia Oy lần lượt lấy 2 điểm C và D sao cho OC=6cm,CD=3cm. Chứng minh: AC song song BD
Cho góc xOy nhọn. Lấy A,B trên tia Ox. Lấy C , D trên tia Oy sao cho AB=CD. Lấy M là trung điểm AC và N là trung điểm BD.CMR MN // tia Oz là tia phân giác của góc xOy
Cho góc nhọn xOy và phân giác OM của góc đó. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB.
a) Chứng minh rằng điểm A đối xứng với B qua OM
b) Gọi C và D là hai điểm lần lượt tên Ox và Oy sao cho OC=OD, Chứng minh AC=BD
Bài 1 : Cho góc nhọn xOy và tia phân giác Om của góc đó .Trên tia Ox lấy điểm A Trên tia Oy lấy điểm B sao cho oa = OB
a) chứng minh rằng A đối xứng với B qua Om
b)Gọi C và D là 2 điểm lần lượt trên Ox,Oy sao cho OC=OD. Chứng minh rằng AC=BD
GIÚP MK VS Ạ
Cho tam giác ABC có O là trung điểm của cạnh AC. Trên tia BO lấy điểm D sao cho OD=OB.
a. Chứng minh tứ giác ABCD là hình bình hành.
b. Trên cạnh BC lấy điểm M,N sao cho BM=MN=NC. Tia NO cắt AD,AB lần lượt tại I và K. Chứng minh AI=NC và AM song song với IN.
Cho đoạn thẳng AC = m. Lấy điểm B bất kỳ thuộc đoạn AC ( B không thuộc A, B không thuộc C).Tia Bx vuông góc với AC. Trên tia Bx lần lượt lấy các điểm D và E sao cho BD = BA và BE = BC.
1) Chứng minh rằng : CD = AE và CD AE.
2) Gọi M, N lần lượt là trung điểm của AE, CD. Gọi I là trung điểm của MN. Chứng minh rằng khoảng cách từ điểm I đến AC không đổi khi B di chuyển trên đoạn AC.
3) Tìm vị trí điểm B trên đoạn AC sao cho tổng diện tích hai tam giác ABE và BCD có giá trị lớn nhất. Tính giá trị lớn nhất này theo m.
Cho đoạn thẳng AC = m. Lấy điểm B bất kỳ thuộc đoạn AC ( B ≠ A, B ≠C).Tia Bx vuông góc với AC. Trên tia Bx lần lượt lấy các điểm D và E sao cho BD = BA và BE = BC.
1) Chứng minh rằng : CD = AE và CD ⊥ AE.
2) Gọi M, N lần lượt là trung điểm của AE, CD. Gọi I là trung điểm của MN. Chứng minh rằng khoảng cách từ điểm I đến AC không đổi khi B di chuyển trên đoạn AC.
3) Tìm vị trí điểm B trên đoạn AC sao cho tổng diện tích hai tam giác ABE và BCD có giá trị lớn nhất. Tính giá trị lớn nhất này theo m.
1) Cho tam giác AOB có AB = 18cm; OA = 12cm; OB = 9cm. Trên tia đối của tia OB lấy điểm D sao cho OD = 3cm. Qua D kẻ đường thẳng song song với AB cắt tia AO ở C. Gọi F là giao điểm của AD và BC.
a) Tính độ dài OC; CD
b) Chứng minh rằng FD. BC = FC.AD
c) Qua O kẻ đường thẳng song song với AB cắt AD và BC lần lượt tại M và N. Chứng minh: OM=ON.
2) Cho tam giác ABC có AB = 8cm; AC = 12cm. Trên cạnh AB lấy điểm D sao cho BD = 2cm, trên cạnh AC lấy điểm E sao cho AE = 9cm.
a) Tính các tỉ số AE/AD;AD/AC
b) Chứng minh: tam giác ADE đồng dạng tam giác ABC
c) Đường phân giác của góc BAC cắt BC tại I. Chứng minh: IB.AE = IC.AD