Cho tam giác abcd có o là trung điểm của ac. trên tia bo lấy điểm d sao cho od=ob
a, cm tứ giác abcd là hình bình hành
b, trên cạnh bc lấy các điểm m,n sao cho bm=mn=nc. tia no cắt ad,ab lần lượt tai i và k.cm ai=nc;am song song với in
Cho △ABC có O là trung điểm của AC . Trên tia BO lấy điểm D sao cho OD = OB
a) Chứng minh tứ giác ABCD là hình bình hành.
b)Trên cạnh BC lấy các điểm M, N sao cho
BM=MN=NC.Tia NO cắt AD,AB lần lượt tại I
Cho tam giác ABC ,trên cạnh AB và AC lần lượt lấy hai điểm M và N. Biết AM=3cm, BM=2cm, AN=7,5cm , NC=5cm. a) chứng minh rằng MN//BC b) đường trung tuyến AI ( I thuộc BC) của tam giác ABC cắt MN tại K. Chứng minh K là trung điểm của MN
Cho tam giác ABC, các điểm M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC. Trên tia đối của tia NP lấy điểm D sao cho ND = NP.
a) Chứng minh: Tứ giác ADCP là hình bình hành.
b) Gọi F là giao điểm của MN và DC. Giả sử MN = 3em. Tinh BC và chứng minh FD = FC.
c) Gọi H là giao điểm của AP và MN; I là giao điểm của NP và HC. Chứng minh: B, I, F thẳng hàng.
nhờ anh chị giải dùm e câu C ạ
Cho tam giác ABC vuông cân tại A, đường trung tuyến AM(M thuộc BC). Lấy điểm P trên cạnh AB sao cho P khác A và B, vẽ đường thẳng song song với BC và AM, hai đường thẳng này cắt AM và BC lần lượt ở N và K.
a) Chứng minh PNMK là hình bình hành
b) Trên tia đối của tia MA lấy điểm D sao cho MD=MA. Chứng minh ABDC là hình chữ nhật
c) Chứng minh PK+PN=AD/2
d) Xác định vị trí của điểm P trên cạnh AB để tứ giác PNMK là hình thoi
e) Tìm điều kiện để tứ giác PNMK là hình vuông
1) Cho tam giác AOB có AB = 18cm; OA = 12cm; OB = 9cm. Trên tia đối của tia OB lấy điểm D sao cho OD = 3cm. Qua D kẻ đường thẳng song song với AB cắt tia AO ở C. Gọi F là giao điểm của AD và BC.
a) Tính độ dài OC; CD
b) Chứng minh rằng FD. BC = FC.AD
c) Qua O kẻ đường thẳng song song với AB cắt AD và BC lần lượt tại M và N. Chứng minh: OM=ON.
2) Cho tam giác ABC có AB = 8cm; AC = 12cm. Trên cạnh AB lấy điểm D sao cho BD = 2cm, trên cạnh AC lấy điểm E sao cho AE = 9cm.
a) Tính các tỉ số AE/AD;AD/AC
b) Chứng minh: tam giác ADE đồng dạng tam giác ABC
c) Đường phân giác của góc BAC cắt BC tại I. Chứng minh: IB.AE = IC.AD
Cho tam giác ABC. trên cạnh AB và AC lần lượt lấy hai điểm M và N biết AM= 3 cm. AM Bằng 7,8 cm .NC = 5 cm a. Chứng minh rằng MN song song với BC b gọi I là điểm trên BC. K là giao điểm của AI và MN cho AC = 6 cm Tính KI
Cho hình vuông ABCD. Trên cạnh AB lấy điểm M, trên tia đối của CB lấy điểm N sao cho AM =CN . Gọi Ilà giao điểm của MN và CD.
GọI E là trung điểm của MN, tia DE cắt BC tại F. Qua M vẽ đường thẳng song song với AD cắt DF tại H. Chứng minh rằng : Tứ giác MFNH là hình thoi.
Chứng minh : Chu vi tam giác BMF không đổi khi m di động trên cạnh AB.
Cho Tam giác ABC cân tại A . Từ một điểm M trên tia AB ( AM < AB ) vẽ đường thẳng song song với BC cắt AC tại N a) Chứng minh tứ giác BMNC là hình thang cân b) Vẽ AE vuông góc với MN . Gọi F , P , Q lần lượt là trung điểm của NC , CB , BM . Chứng minh tứ giác EFPQ là hình thoi . c) MC cắt NB tại I . Chứng minh A , I , P thẳng hàng ( khỏi vẽ hình ạ , giải chi tiết ra hộ tui với ạ)