Bài 1: Giải các hệ PT
a) \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y-2}=4\\\dfrac{4}{x}-\dfrac{1}{y-2}=1\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}3\sqrt{x}+2\sqrt{y}=16\\2\sqrt{x}-3\sqrt{y}=-11\end{matrix}\right.\) c) \(\left\{{}\begin{matrix}\dfrac{1}{2}\left(x+2\right)\left(y+1\right)=\dfrac{1}{2}xy+5\\\dfrac{1}{3}\left(x-3\right)\left(y-5\right)=\dfrac{1}{3}xy-\dfrac{4}{3}\end{matrix}\right.\)
Cho \(x=\frac{3}{\sqrt[3]{4}-\sqrt[3]{2}+1}\)
\(y=\frac{6}{4+\sqrt[3]{4}+\sqrt[3]{16}}\)
Cm x+y là số tự nhiên
1, CMR nếu a, b, c là các số tự nhiên đôi một nguyên tố cùng nhau thì \(\left(ab+bc+ca,abc\right)=1\)
2, CMR \(\forall n\in N\)* thì \(\dfrac{\left(17+12\sqrt{2}\right)^n-\left(17-12\sqrt{2}\right)^n}{4\sqrt{2}}\)
3, Tìm x,y∈Z:\(x^3-y^3=13\left(x^2+y^2\right)\)
Tìm điều kiện có nghĩa:
1) \(\sqrt{\dfrac{-4}{x^2-1}}\)
2) \(\sqrt{\dfrac{x+1}{x-2}}\)
3) \(\sqrt{\dfrac{x-2}{x+3}}\)
4) \(\sqrt{\dfrac{a-3}{2-a}}\)
5) \(\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
thực hiện phép tính
a)\(\dfrac{3}{5}\)-\(\dfrac{1}{2}\)\(\sqrt{1\dfrac{11}{25}}\)
b)(5+2\(\sqrt{6}\))(5-2\(\sqrt{6}\))
c)\(\sqrt{\left(2-\sqrt{3}\right)^2}\)+\(\sqrt{4-2\sqrt{3}}\)
d)\(\dfrac{\left(x\sqrt{y}+y\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\)(với x,y>0)
\(\dfrac{\sqrt{27}-\sqrt{15}}{3-\sqrt{5}}+\dfrac{4}{2+\sqrt{3}}-\dfrac{6}{\sqrt{3}}\)
\(\dfrac{x-y}{\sqrt{x}+\sqrt{y}}-\dfrac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}\)
Cho x;y;z là các số dương thỏa mãn \(x^2+y^2+z^2=12\)cmr
\(\dfrac{1}{\sqrt{x^3+1}}+\dfrac{1}{\sqrt{y^3+1}}+\dfrac{1}{\sqrt{z^3+1}}\ge1\)
GIẢI HPT
\(\left\{{}\begin{matrix}\dfrac{7}{\sqrt{x}-7}-\dfrac{4}{\sqrt{y}+6}=\dfrac{5}{3}\\\dfrac{5}{\sqrt{x}-7}+\dfrac{3}{\sqrt{y}+6}=2\dfrac{1}{6}\end{matrix}\right.\)
Bài 1 Rút gọn
a) \(\dfrac{2}{5}\sqrt{75}-0,5\sqrt{48}+\sqrt{300}-\dfrac{2}{3}\sqrt{12}\)
b) \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}+\dfrac{3}{3+\sqrt{6}}\)
c) \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
Bài 2: Cho 2 đường thẳng (d): y = -x - 4 và (d₁): y = 3x + 2.
a) Vẽ đồ thị (d) và (d₁) trên cùng một mặt phẳng tọa độ Oxy.
b) Xác định tọa điểm A của 2 đường thẳng trên.
c) Viết pt đường thẳng: (d₂): y = ax + b (a≠0) song song vs đường thẳng (d) và đi qua điểm B(-2;5)