a: \(\left|x-y\right|=10\)
b: \(\left(x+y\right)^2=\left(x-y\right)^2+4xy=100+80=180\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=6\sqrt{5}\\x+y=-6\sqrt{5}\end{matrix}\right.\)
\(\dfrac{x^2+y^2}{x^2-y^2}=\dfrac{\left(x+y\right)^2-2xy}{\left(x-y\right)\left(x+y\right)}\)
\(=\left[{}\begin{matrix}\dfrac{180-40}{10\cdot6\sqrt{5}}=\dfrac{7}{3\sqrt{5}}\\-\dfrac{7}{3\sqrt{5}}\end{matrix}\right.\)