cho x=y+1. CMR:(x+y)(x2+y2)(x4+y4)(x8+y8)=x16+y16
Cho x=y+1. Chứng minh rằng:
a) x3-y3-3xy=1
b) (x+y)(x2+y2)(x4+y4)(x8+y8)=x16-y16
Rút gọn biểu thức với x - y = 1
\(\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\left(x^8+y^8\right)\left(x^{16}+y^{16}\right)\)
Bài 8: Phân tích đa thức sau thành nhân tử
1)(x+y)^2-9x^2
2)(3x-1)^2-16
3)4x^2-(x^2+1)^2
4)(2x+1)^2 -(x-1)^2
5)(x+1)^4 - (x-1)^4
6)25(x-y)^2 - 16(x+y)^2
7) (x^2+xy)^2 - (y^2 + xy)^2
8)(x^2 +4y^2-20)^2 -16(xy-4)^2
Cho x=y+1. Chứng minh rằng:
a)\(x^3-y^3-3xy=1\)
b)\(\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\left(x^8+y^8\right)=x^{16}-y^{16}\)
Thực hiện phép tính:
a/ 1/(1-x)+1/(1+x)+1/(1+x^2)+4/(1+x^4)+8/(1+x^8)+16/(1+x^16)
b/chứng minh nếu 1/x+1/y+1/z=2 và x+y+z=xưa thi 1/x^2+1/y^2+1/z^2
Cho x;y>0 thỏa x+y=1. Tìm Min A=16(x4+y4)
Ta có: \(A=16\left(x^4+y^4\right)\ge\frac{16.\left(x^2+y^2\right)^2}{2}=8\left(x^2+y^2\right)^2\)
\(\ge8.\left[\frac{\left(x+y\right)^2}{2}\right]^2=\frac{8.\left(x+y\right)^4}{2}=2\left(x+y\right)^4=1\)
Dấu = khi \(x=y=\frac{1}{2}\)
Bài 3:Chứng minh biểu thức không phụ thuộc vào biến
1, (y-5)(y+8)-(y+4)(y-1)
2, y\(^4\)- (y\(^2\)+1)(y\(^2\)-1)
3, x(y-z) + y(z-x) +z(x-y)
4, x(y+z-yz) -y(z+x-xz)+z(y-x)
5, x(2x+1) - x\(^2\)(x+2)+x\(^3\)-x+3
6, x (3x-x+5)-(2x\(^3\)+3x-16)-x(x\(^2\)-x+2)
Bài 4: Chứng minh biểu thức không phụ thuộc vào biến
a, (y-5)(y+8)-(y+4)(y-1)
2, y\(^4\)-(y\(^2\)+1)(y\(^2\)-1)
3, x(y-z)+y(z-x)+z(x-y)
4, x(y+z-yz)-y(z+x-xz)+z(y-x)
5, x(2x+1)-x\(^2\)(x+2)+x\(^3\)-x+3
6, x(3x-x+5)-(2x\(^3\)+3x-16)-x(x\(^2\)-x+2)