lllllllllllllllllllllllllllllllllllllllllllllllllllllll
lllllllllllllllllllllllllllllllllllllllllllllllllllllll
Cho 3 số x,y,z thỏa mãn x+y+z=0
Vậy giá trị của x^3 - y^3 + z^3 - 3xyz =?
Cho x,y,z là số thực dương khác 0 thoả mãn (1/x+1/y+1/z)^2=1/x^2+1/y^2+1/z^2
Chứng minh rằng x^3+y^3+z^3=3xyz
Cho x>0;y>0;z>0 và \(x^3+y^3+z^3=3xyz\)
Chứng minh rằng : x=y=z
Cho x,y,z là 3 số khác 0 thỏa mãn điều kiện x3+y3+z3=3xyz và x+y+z=0.Tính giá trị của biểu thức:
\(M=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
cho x+y+z=0.Chứng minh x^3+y^3+z^3=3xyz
cho 3 số thực x,y,z>0 thỏa mãn xyz=1 và 1/x+1/y+1/z<x+y+z. Chứng minh rằng có chính xác 1 trong 3 số x, y, z lớn hơn 1
cho x+y+z=0.Chứng minh rằng:x^3+y^3+z^3=3xyz
cho x+y+z = 0 . Chứng minh :
x^3 +y^3+ z^3 = 3xyz