Từ giả thiết ta thấy tất cả các biểu thức đều xác định :
Ta có : \(\log_ax=1+\log_ax.\log_az\Leftrightarrow\log_ax=\frac{1}{1-\log_az}=\frac{1}{1-\log_a\frac{a}{z}}=\log_{\frac{a}{z}}z\)
Do đó \(\log_xa.\log_{\frac{a}{z}}z=1\)
Tương tự \(\log_ya.\log_{\frac{a}{x}}x=1\)
Hơn nữa, thay \(\log_ax=\frac{1}{1-\log_az}\) vào \(\log_ay=1+\log_ay.\log_ax\), ta được :
\(\log_ay=1+\frac{\log_ay}{1-\log_az}\Leftrightarrow1-\log_az=\frac{\log_ay}{\log_ay-1}\)
\(\Leftrightarrow\log_za=1+\log_ay.\log_az\)
Tương tự như trên ta cũng có :
\(\log_za.\log_{\frac{a}{y}}y=1\)
Từ đó suy ra :
\(A=\left(\log_{\frac{a}{x}}a.\log_ya\right)\left(\log_{\frac{a}{y}}a.\log_za\right)\left(\log_{\frac{a}{z}}a.\log_xa\right)=1\)