cho 2 số thực x,y thỏa mãn điều kiên \(x+y+25=8\left(\sqrt{x-1}+\sqrt{y-5}\right)\). Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức: \(P=\sqrt{\left(x-1\right)\left(y-5\right)}\)
cho 2 số thực x,y thỏa mãn điều kiên \(x+y+25=8\left(\sqrt{x-1}+\sqrt{y-5}\right)\). Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức: \(P=\sqrt{\left(x-1\right)\left(y-5\right)}\)
cho các số thực x,y,z thỏa mãn x,y,z\(\ge\)1 và \(3\left(x+y+z\right)=x^2+y^2+z^2+2xy\)
Tìm giá trị nhỏ nhất của biểu thức: P=\(\frac{x^2}{\left(x+y\right)^2+x}+\frac{x}{z^2+x}\)
Cho x, y là các số thực lớn hơn 1 thoả mãn \(x^2+9y^2=6xy\) . Chứng minh:
\(\dfrac{1+log_{12}x+log_{12}y}{2log_{12}\left(x+3y\right)}=1\)
cho các số thực x,y,z thỏa mãn \(x^4+y^4+z^4+2x^2y^2z^2=1\). Tìm giá trị nhỏ nhất của biểu thức \(P=x^2+y^2+z^2-\sqrt{2}|xyz|\)
Cho hai số thực x,y thỏa mãn 0 ≤ x ≤ 1 2 , 0 ≤ y ≤ 1 2 , và log ( 11 - 2 x - y ) = 2 y + 4 x - 1 . Xét biểu thức P = 16 y x 2 - 2 x ( 3 y + 2 ) - y + 5 . Gọi m, M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của P. Khi đó giá trị của T = ( 4 m + M ) bằng bao nhiêu?
A. 16
B. 18
C. 17
D. 19
Xét các số thực dương x, y thỏa mãn 2018 2 ( x 2 - y + 1 ) = 2 x + y ( x + 1 ) 2 . Tìm giá trị nhỏ nhất P m i n của P = 2y - 3x.
A. P m i n = 1 2
B. P m i n = 7 8
C. P m i n = 3 4
D. P m i n = 5 6
Cho x,y là hai số thực dương thay đổi thỏa mãn điều kiện ( x y + 1 ) ( x y + 1 - y ) ≤ 1 - x - 1 y . Tìm giá trị lớn nhất của biểu thức P = x + y x 2 - x y + 3 y 2 - x - 2 y 6 ( x + y )
A. 5 3 - 7 30
B. 7 30 - 5 3
C. 5 3 + 7 30
D. 5 + 7 30
Cho các số thực x,y,z thỏa mãn \(x^4+y^4+z^4+2x^2y^2z^2=1\). Tìm giá trị nhỏ nhất của biểu thức \(P=x^2+y^2+z^2-\sqrt{2}|xyz|\)
Cho hai số thực dương x,y thỏa mãn . Giá trị lớn nhất của biểu thức là:
A. 18
B. 12
C. 16
D. 21