Đáp án D
Phương pháp giải:
Sử dụng phương pháp hàm đặc trưng để từ giả thiết suy ra mối liên hệ giữa hai biến, sau đó sử dụng phương pháp thể và khảo sát hàm số tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức
Đáp án D
Phương pháp giải:
Sử dụng phương pháp hàm đặc trưng để từ giả thiết suy ra mối liên hệ giữa hai biến, sau đó sử dụng phương pháp thể và khảo sát hàm số tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức
Cho x, y là các số thực dương thỏa mãn 5 x + 2 y + 3 3 x y + x + 1 = 5 x y 5 + 3 − x − 2 y + x − 2 . Tìm giá trị nhỏ nhất của biểu thức T = x + y .
A. T min = 2 + 3 2 .
B. T min = 1 + 5 .
C. T min = 3 + 2 3 .
D. T min = 5 + 3 2 .
Cho x, y là các số thực dương thỏa mãn điều kiện 5 x + 2 y + 3 3 x y + x + 1 = 5 x y 5 + 3 - x - 2 y + y x - 2 . Tính giá trị nhỏ nhất của biểu thức T = x + y
A. T m i n = 2 + 3 2
B. T m i n = 3 + 2 3
C. T m i n = 1 + 5
D. T m i n = 5 + 3 2
Cho các số thực dương x, y thỏa mãn log x + y x 2 + y 2 ≤ 1 .Giá trị lớn nhất của biểu thức A= 48 ( x + y ) 3 - 156 ( x + y ) 2 + 133 ( x + y ) + 4 là
A. 29.
B. 1369/36.
C. 30.
D. 505/36
Cho x, y là các số thực thỏa mãn ( x − 3 ) 2 + ( y − 1 ) 2 = 5 . Giá trị nhỏ nhất của biểu thức P = 3 y 2 + 4 x y + 7 x + 4 y − 1 x + 2 y + 1 là
A. 2 3 .
B. 3 .
C. 114 11 .
D. 3
Xét các số thực dương x, y thỏa mãn log 3 x + y x 2 + y 2 + x y + 2 = x(x - 3) + y(y - 3) + xy. Tìm giá trị Pmax của biểu thức P = 3 x + 2 y + 1 x + y + 6
A. Pmax = 0
B. Pmax = 2
C. Pmax = 1
D. Pmax = 3
Xét các số thực dương x, y thỏa mãn log 3 x + y x 2 + y 2 + x y + 2 = x ( x - 3 ) + y ( y - 3 ) + x y . Tìm giá trị Pmax của biểu thức P = 3 x + 2 y + 1 x + y + 6
A. Pmax = 0
B. Pmax = 2
C. Pmax = 1
D. Pmax = 3
Xét các số thực dương x, y thỏa mãn log 5 x + y x 2 + y 2 + x y + 2 = x x - 3 + y y - 3 + x y . Tìm giá trị lớn nhất của biểu thức P = 3 x + 2 y + 1 x + y + 6 .
A. m a x P = 1
B. m a x P = 4
C. m a x P = 2
D. m a x P = 3
Cho các số thực x,y thỏa mãn 2 x + 3 + y + 3 = 4 . Giá trị nhỏ nhất của x + 2 + y + 9 bằng
A. 6 + 17 2
B. 3
C. 3 10 2
D. 1 2 + 21
Cho x, y là các số thực dương thỏa mãn 2 ( x 2 + y 2 ) + x y = ( x + y ) ( x y + 2 ) Giá trị nhỏ nhất của biểu thức P = 4 ( x 3 y 3 + y 3 x 3 ) - 9 ( x 2 y 2 + y 2 x 2 )
A. - 25 4
B. 5
C. -13
D. - 23 4