Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
♥➴Hận đời FA➴♥

Cho x, y > 0 và xy = 1 . Chứng minh: \(\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}\ge3\)

 

KAl(SO4)2·12H2O
11 tháng 6 2018 lúc 15:09

Đặt:  \(A=\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}\)

Ta có: \(A=\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}=\frac{xy}{x}+\frac{xy}{y}+\frac{2}{x+y}\left(\text{Do: xy = 1}\right)\)

                                                         \(=x+y+\frac{2}{x+y}\)

                                                         \(=\frac{x+y}{2}+\frac{x+y}{2}+\frac{2}{x+y}\)

Đặt: \(B=\frac{x+y}{2};C=\frac{x+y}{2}+\frac{2}{x+y}\)

\(\Rightarrow A=B+C\)

Vì x, y > 0, áp dụng BĐT Cô-si, ta có:

\(\Rightarrow B=\frac{x+y}{2}\ge\sqrt{xy}=\sqrt{1}=1\) (1)

Ta có: x, y > 0 => x + y > 0

Áp dụng BĐT \(\frac{a}{b}+\frac{b}{a}\ge2\) với hai số dương x + y và 2

\(\Rightarrow C=\frac{x+y}{2}+\frac{2}{x+y}\ge2\) (2)

\(\text{Từ (1); (2) }\Rightarrow B+C=\frac{x+y}{2}+\frac{2}{x+y}\ge1+2\)

                      \(\Rightarrow A\ge3\)

                     \(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}\ge3\)

                      => ĐPCM


Các câu hỏi tương tự
Chinh Bùi
Xem chi tiết
Bùi Đức Anh
Xem chi tiết
Trần Công Tâm Danh
Xem chi tiết
N.T.M.D
Xem chi tiết
Trần Thị Hà Phương
Xem chi tiết
Lê Thảo Vy
Xem chi tiết
Hồ Minh Phi
Xem chi tiết
luyen hong dung
Xem chi tiết
Mika Yuuichiru
Xem chi tiết