Đặt: \(A=\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}\)
Ta có: \(A=\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}=\frac{xy}{x}+\frac{xy}{y}+\frac{2}{x+y}\left(\text{Do: xy = 1}\right)\)
\(=x+y+\frac{2}{x+y}\)
\(=\frac{x+y}{2}+\frac{x+y}{2}+\frac{2}{x+y}\)
Đặt: \(B=\frac{x+y}{2};C=\frac{x+y}{2}+\frac{2}{x+y}\)
\(\Rightarrow A=B+C\)
Vì x, y > 0, áp dụng BĐT Cô-si, ta có:
\(\Rightarrow B=\frac{x+y}{2}\ge\sqrt{xy}=\sqrt{1}=1\) (1)
Ta có: x, y > 0 => x + y > 0
Áp dụng BĐT \(\frac{a}{b}+\frac{b}{a}\ge2\) với hai số dương x + y và 2
\(\Rightarrow C=\frac{x+y}{2}+\frac{2}{x+y}\ge2\) (2)
\(\text{Từ (1); (2) }\Rightarrow B+C=\frac{x+y}{2}+\frac{2}{x+y}\ge1+2\)
\(\Rightarrow A\ge3\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}\ge3\)
=> ĐPCM