Cho x, y là các số thực dương thỏa mãn ln x + ln y ≥ ln x 2 + y . Tính giá trị nhỏ nhất của P = x + y.
Xét các số thực dương x, y thỏa mãn ln ( 1 - 2 x x + y ) = 3 x + y - 1 Tính giá trị nhỏ nhất P m i n của biểu thức P = 1 x + 1 x y
A. P m i n = 8
B. P m i n = 16
C. P m i n = 4
D. P m i n = 2
Cho hàm số y = f(x) liên tục trên khoảng 0 ; + ∞ . Biết f(1) = 1 và f(x) = xf'(x) + ln (x). Giá trị f(e) bằng
A. e
B. 1
C. 2
D. 1 e
Cho hai số thực x, y thỏa mãn x≥ 0; y≥1 ; x+ y= 3 . Giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P= x3+ 2y2+ 3x2+ 4xy- 5x lần lượt bằng:
A. 20 và 18 .
B. 20 và 15.
C. 16 và 15 .
D. 16 và 13.
Cho x>0; y>0 thỏa mãn ln x y 2 = 8 , ln x y = - 1 Tính P = ln(xy)
A. P = 3
B. P = 4
C. P = 5
D. P = 6
Cho hai số thực x , y thỏa mãn 0 ≤ x ≤ 1 2 , 0 < y ≤ 1 và log ( 11 - 2 x - y ) = 2 x + 4 y - 1 Xét biểu thức P = 16 x 2 y - 2 x ( 3 y + 2 ) - y + 5 . Gọi m , M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của P. Khi đó giá trị của biểu thức T = 4 m + M bằng bao nhiêu?
A. 16
B. 18
C. 17
D. 19
Có tất cả bao nhiêu cặp số thực (x,y) sao cho x ∈ - 1 ; 1 và ln ( x - y ) x - 2017 y + e 2018 . Biết rằng giá trị lớn nhất của biểu thức P = e 2018 ( y + 1 ) x 2 - 2018 x 2 với ( x ; y ) ∈ S đạt được tại (x0, y0). Mệnh đề nào sau đây đúng?
Cho x, y là các số thực dương thỏa mãn ln x + ln y ≥ ln ( x 2 + y ) là các số thực dương thỏa mãn P = x + y
Cho 0 ≤ x ; y ≤ 1 thỏa mãn 2017 1 - x - y = x 2 + 2018 x 2 - 2 y + 2019 . Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của biểu thức S = (4x2 + 3y)(4y2 + 3x) + 25xy. Khi đó M + m bằng bao nhiêu?