Tìm giá trị nhỏ nhất của biểu thức : \(A=4x+\frac{1}{4x}-\frac{4\sqrt{x}+3}{x+1}+2016\) với x>0
Giaỉ giúp mình nha
tìm giá trị nhỏ nhất của biểu thức \(A=\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4x}+\frac{4x\sqrt{x}+4x}{4x^2+9x+18\sqrt{x}+9},x>0\)
Tìm giá trị nhỏ nhất của biểu thức \(A=\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4x}+\frac{4x\sqrt{x}+4x}{4x^2+9x+18\sqrt{x}+9}\) với x > 0
Tính giá trị nhỏ nhất của biểu thức A:
\(A=4x+\frac{1}{4x}-\frac{4\sqrt{x}}{x+1}+2016\) với x>0
Cho biểu thức:
\(P=\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}-\frac{4x}{x-4}\)
1, Tìm điều kiện xác định của biểu thức P. Rút gọn biểu thức P
2, Tìm x để P = 2
3, Tính giá trị của biểu thưc P tại x thỏa mãn \(\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\)
4. Tìm giá trị x để \(P=\frac{\sqrt{x}+3}{2\sqrt{x}-1}\)
5. Tìm tất cả các giá trị nguyên của x để biểu thức P nhận giá trị nguyên
Cho x>0, y>0 và x+y<=\(\frac{4}{3}\).Tìm giá trị nhỏ nhất của biểu thức S=x+y+\(\frac{3}{4x}+\frac{3}{4y}\)
a) Cho biểu thức
P= ($\frac{x}{x-1}$- $\frac{1}{\sqrt{x}-1}$- $\frac{1}{\sqrt{x}+1}$).($\frac{4\sqrt{x}-8}{x\sqrt{x}-4x+4\sqrt{x}}$), với x>0, x $\neq$1, x $\neq$4. Tìm các số nguyên x để P nhận giá trị nguyên dương.
b) Cho 3 số thực x,y,z thỏa mãn điều kiện: x+y+z=0 và xyz $\neq$0. Tính giá trị biểu thức
P= $\frac{x^2}{y^2+z^2-x^2}$ +$\frac{y^2}{z^2+x^2-y^2}$ +$\frac{z^2}{x^2+y^2-z^2}$
Cho biểu thức A=\(1-\left(\frac{2}{1+2\sqrt{x}}-\frac{5\sqrt{x}}{4x-1}-\frac{1}{1-2\sqrt{x}}\right):\frac{\sqrt{x}-1}{4x+4\sqrt{x}+1}\)
rút gọn a
tìm giá trị nguyên của x để A đạt giá trị nguyên
Tìm giá trị nhỏ nhất của biểu thức \(A=\sqrt{x^2-2x+1}+\sqrt{x^2+4x+4}\)
Giai phương trình a, \(x\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=2\)
b,\(\frac{\sqrt{x-2010}-1}{x-2010}+\frac{\sqrt{y-2011}-1}{y-2011}+\frac{\sqrt{z-2012}-1}{2012}=\frac{3}{4}\)