Cho tam giác ABC nội tiếp trong đường tròn (O). Biết góc C bằng 45 độ, AB = a. Độ dài cung nhỏ AB là
A. \(\pi\).\(\dfrac{\sqrt{2}}{2}\)a B. \(\pi\) .\(\dfrac{\sqrt{2}}{4}\)a C. \(\pi\) .\(\dfrac{\sqrt{2}}{4}\) D. \(\pi\) .\(\dfrac{\sqrt{3}}{4}\)a
cho tứ giác ABCD nội tiếp đường tròn tâm (O) đường kính AB. Hai đường chéo AC và BD cắt nhau tại I. Kẻ IE vuông góc với AB. Chứng minh rằng:
a) Tứ giác AIDE nội tiếp một đường tròn.
b) Tia BD là tia phân giác của góc CDE.
c) Trường hợp AB không song song với CD. Chứng minh 4 điểm O, E, D, C cùng thuộc một đường tròn.
Câu 1 cho tứ giác ABCD nội tiếp nửa đường tròn kính AD. Hai đường chéo AC và BD cắt nhau tại d vẽ AD vuông góc với ad chứng minh A. Tứ giác ABEF nội tiếp B. AC là tia phân giác của góc BCF Câu 8 cho đường tròn tâm o đường kính AB. Vẽ dây cung CD vuông góc AB tại I (I nằm giữa a và o) lấy điểm e trên cung nhỏ BC (e khác b và c) AE cắt CD tại F. Chứng minh A. BEFI là tứ giác nội tiếp B. AE x AF = AC²
Cho tứ giác ABCD nội tiếp đường tròn (O) đường kính AB. Hai đường chéo AC và BD cắt nhau tại I. Kẻ IE vuông góc với AB. Chứng minh :
a. Tứ giác ADIE nội tiếp đường tròn ;
b. Tia DB là phân giác của góc CDE ;
c. Nếu AB không song song CD, chứng minh bốn điểm O, E, D, C cùng thuộc một đường tròn.
Cho tứ giác ABCD nội tiếp đường tròn tâm O đường kính AD=2R. Hai đường chéo AC và BD cắt nhau tại E. Kẻ EF vuông góc với AD tại F.
a) Cm tứ giác ABEF nội tiếp.
b) cm góc DBC = goc DBF.
c) Tia BF cắt đường tròn tâm O tại K. cm EF//CK
d) Giả sử góc EFB = 60 độ. TÍnh theo R diện tích hình giới hạn bởi dây BC và cung BC
cho hình thang ABCD (AB//CD) có đường chéo BD hợp với BC một góc bằng góc DAB
a) chứng minh BD2 = AB.CD
b) áp dụng tính BD biết: AB = \(\dfrac{10\sqrt{7+4\sqrt{3}}-10\sqrt{3}}{10:2\pi}\); CD = 14,2524. cotg2 35016'
Cho tứ giác ABCD nội tiếp đường tròn (O; R) có hai đường chéo AC và BD vuông góc với nhau. Chứng minh rằng A B 2 + C D 2 = 4 R 2
Cho tứ giác ABCD nội tiếp đường tròn (O) đường kính BD(góc ABC > 90 độ). Các đường thẳng AB và CD cắt nhau tại E; các đường AD và BC cắt nhau tại F
1)Chứng minh BD vuông góc với EF
2)Chứng minh BA.BE=BC.BF
3) Chứng minh B là tâm đường tròn nội tiếp tam giác AHC
4) Cho góc ABC=135 độ; BD=10 cm. Tính AC
Cho hình vuông ABCD nội tiếp đường tròn (O; R), cho hình vuông ABCD quay xung quanh đường trung trực của 2 cạnh đối, thì phần thể tích của khối cầu nằm ngoài khối trụ là:
A. \(\frac{\pi R^3}{4}\left(8-3\sqrt{2}\right)\) B. \(\frac{\pi R^3}{6}\left(8-3\sqrt{3}\right)\) C. \(\frac{\pi R^3}{3}\left(8-3\sqrt{2}\right)\) D.\(\frac{\pi R^3}{12}\left(8-3\sqrt{2}\right)\)
( Có lời giải )