Đặt AB = a; BC = b; CD = c; AD = d
C A B 2 = 2 π . a 2 2 = π . a 2 . Tương tự C C D 2 = π . c 2
Vậy C A B 2 + C C D 2 = π 2 a + c
Có C B C 2 + C C D 2 = π 2 b + d
Tứ giác ABCD ngoại tiếp, kết hợp tính chất tiếp => a + c = b + d => ĐPCM
Đặt AB = a; BC = b; CD = c; AD = d
C A B 2 = 2 π . a 2 2 = π . a 2 . Tương tự C C D 2 = π . c 2
Vậy C A B 2 + C C D 2 = π 2 a + c
Có C B C 2 + C C D 2 = π 2 b + d
Tứ giác ABCD ngoại tiếp, kết hợp tính chất tiếp => a + c = b + d => ĐPCM
Cho tứ giác ABCD ngoại tiếp (O). Vẽ ra phía ngoài tứ giác này 4 nửa đường tròn có đường kính lần lượt là bốn cạnh của tứ giác. Chứng minh rằng tổng độ dài của 2 nửa đường tròn có đường kính là 2 cạnh đối diện bằng tổng độ dài 2 nửa đường tròn kia.
Mn giúp em với :((((
Tứ giác ABCD ngoại tiếp đường tròn (O), vẽ các nửa đường tròn đường kính AD và BC ra phía ngoài của tứ giác. Biết AB + CD = 10cm. Tính tổng các độ dài của hai nửa đường tròn này.
Cho tứ giác lồi ABCD về phía trong tứ giác ta dựng các nửa đường tròn đường kính là các cạnh của tứ giác . Chứng minh rằng tứ giác ABCD hoàn toàn bị phủ kín bởi 4 nửa đường tròn trên.
Cho nửa đường tròn (O; R) đường kính BC. Lấy điểm A trên tia đối của tia CB. Kẻ tiếp tuyến AF của nửa đường tròn (O) (vói F là tiếp điểm), tia AF cắt tiếp tuyến Bx của nửa đường tròn tại D. Cho biết AF = 4 R 3
a, Chứng minh tứ giác OBDF nội tiếp. Xác định tâm I của đường tròn ngoại tiếp tứ giác này
b, Tính côsin góc D A B ^
c, Kẻ OM ^ BC (M Î AD). Chứng minh
B
D
D
M
-
D
M
A
M
=
1
d, Tính diện tích phần hình tứ giác OBDM ở bên ngoài nửa đường tròn (O) theo R
a)Từ điểm M nằm ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MC của đường tròn, A và C là các tiếp điểm. Kẻ đường kính BC. Biết 70 độ thì góc AMC bằng:
b)Cho đường tròn (O; 2cm). Từ điểm A sao cho OA = 4cm , vẽ hai tiếp tuyến AB, AC đến đường tròn (O) (B, C là tiếp điểm). Chu vi tam giác ABC bằng:
c)Cho nửa đường tròn tâm O, đường kính AB cm =10 . Điểm M thuộc nửa đường tròn. Qua M kẻ tiếp tuyến xy với nửa đường tròn. Gọi D và C lần lượt là hình chiếu của A, B trên xy. Diện tích lớn nhất của tứ giác ABCD là:
Cho nửa đường tròn(o) đường kính AB và điểm M nằm trên nửa đường tròn đó. Kẻ MH vuông góc AB và BH nằm trong nửa đường tròn(o), MA,MB cắt các nửa đường tròn trên lần lượt tai P và Q. Chứng minh rằng a) PQ=MH b)MP.MA=MQ.MB c)PQ là tiếp tuyến chung của hai nửa đường tròn d) tứ giác ABQP nội tiếp đường tròn e) xác định vị trí của M trên nửa đường tròn(o) để tứ giác MPHQ là hình vuông
cho nửa đường tròn tâm O đường kính AB = 6 vẽ tứ giác ABCD nội tiếp nửa đường tròn sao cho AD = BC = căn 3. Độ dài BC là
Cho đường tròn (O) đường kính AB, Ax và By là hai tiếp tuyến của (O) tại các tiếp điểm A, B. Lấy điểm M bất kì trên nửa đường tròn (M thuộc cùng một nửa mặt phẳng bờ AB chứa Ax, By), tiếp tuyến tại M của (O) cắt Ax, By lần lượt tại C và D.
1. Chứng minh: Tứ giác AOMC nội tiếp.
2. Giả sử BD = R√3. Tính AM.
3. Nối OC cắt AM tại E, OD cắt BM tại F, kẻ MN ⊥ AB (N ∈ AB), chứng minh đường tròn ngoại tiếp ΔNEF luôn đi qua 1 điểm cố định.
4. Tìm vị trí điểm M trên nửa đường tròn để bán kính đường tròn ngoại tiếp tứ giác CEFD có độ dài nhỏ nhất
1. Cho đường tròn (O) đường kính AB. Vẽ đường tròn (I) đường kính OA. Bán kính OC của đường tròn (O) cắt đường tròn (I) tại D. Vẽ CH vuông góc AB. Chứng minh tứ giác ACDH là hình thang cân.
2. Cho tứ giác ABCD có góc C+góc D=90 độ. Gọi M, N, P, Q lần lượt là trung điểm của AB, BD, DC và CA. Chứng minh rằng bốn điểm M, N, P, Q cùng nằm trên một đường tròn.