a: Xét ΔABC có
M,I lần lượt là trung điểm của AB và AC
nên MI là đường trung bình
=>MI//BC và MI=BC/2(1)
b: Xét ΔACD có
I,N lần lượt là trung điểm của CA và CD
nên IN là đường trung bình
=>IN=AD/2(2)
Từ (1) và (2) suy ra IM=IN
hay ΔIMN cân tại I
a: Xét ΔABC có
M,I lần lượt là trung điểm của AB và AC
nên MI là đường trung bình
=>MI//BC và MI=BC/2(1)
b: Xét ΔACD có
I,N lần lượt là trung điểm của CA và CD
nên IN là đường trung bình
=>IN=AD/2(2)
Từ (1) và (2) suy ra IM=IN
hay ΔIMN cân tại I
Cho hình bình hành ABCD.Trên các cạnh AB lấy điểm M bất kì. Từ M kẻ MN song song với AD( N thuộc DC). Gọi H là trung điểm của BM. Đường thẳng qua H vuông góc với BM lần lượt cắt các đường thẳng MN và BC tại E và F. a) Chứng minh các tứ giác AMND; BMNC là hình bình hành
b)Chứng minh E và F đối xứng nhau qua AB từ đó suy ra tứ giác MEBF là hình bình hành.
c) Kéo dài MF cắt đường thẳng DC tại I. Chứng minh tứ giác AMID là hình thang cân.
Hình bình hành ABCD phải có thêm điều kiện gì để tứ giác BCNE là hình thang cân?
Cho hình thang cân ABCD (AB//CD; AB<CD). Qua A kẻ đường thẳng song song với BC cắt CD tại M.
a) Tứ giác ABCD là hình gì ? Vì sao ?
b) Gọi I là trung điểm của AM, H là trung điểm của AC; đường thẳng IH cắt BC tại K. Chứng minh K là trung điểm của BC.
c) Chứng minh DC - AB < 4.BK
1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:
a, =
B, =*
c, =
3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM
Cho hình thang ABCD(AB//CD) Qua trung điểm M của AD vẽ đường thẳng song song với AB cắt AC tại N và BC tại K
a) Chứng minh N là trung điểm AC , K là trung điểm BC
b) Cho AB =½ DC, DC=20cm.Tính độ dài AB, MN, NK, MK
cho hình vuông ABCD cạch 6cm, trên cạnh BC lấy điểm E kẻ đường thẳng vuông góc với AE cắt DC tại F. Gọi I là trung điểm của EF, AI cắt tại K. Qua E kẻ đường thẳng song song AB cắt AK tại G.
a, chứng minh tứ giác EKFG là hình thoi
b, chứng minh: AF2 = KF.CF
c, chứng minh B, I , D thẳng hàng
d, tính chu vi tam giác CKE
Cho hình thang ABCD (AB // CD). Một đường thẳng song song với AB lần lượt cắt các đoạn thẳng AD, BD, AC, BC tại M, N, P, Q.
a/ Chứng minh MN = PQ.
b/ Gọi E là giao điểm của AD và BC, F là giao điểm của AC và BD. Chứng minh đường thẳng EF đi qua trung điểm của AB và DC
Cho tam giác ABC cân tại A. Lấy D, E lần lượt là trung điểm của AB và AC. a) Chứng minh tứ giác BDEC là hình thang cần. b) Lấy I là trung điểm của BD. Qua I vẽ đường thẳng song song với AC cắt DE tại M, BC tại N. Chứng minh MN – EC. ©) Tứ giác BMDN là hình gi? Vì sao? d) . Tìm điều kiện của AABC đề tử giác BMDN là hình vuông?
1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:
A, IP/OA=IB/OB
B, IP/IS=IB/ID*OD/OB
C, IP/IS=IQ/IR
3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM
iúp với con 2 bài này thôi 11h mik nộp r
Bài 5: Cho hình thang cân ABCD (AB//CD, CD =2AB) .Gọi M là trung điểm của DC.
a)Tứ giác ABCM là hình gì ?Vì sao?
b) Từ D và C kẻ đường thẳng vuông góc với DC cắt AD và BC lần lượt tại H và I. Chứng minh tứ giác IHCD là hình chữ nhật
c)Gọi K là giao điểm của DH và CI ,Kẻ KN ⊥ IH. Chứng minh 3 điểm N, K, M thẳng hàng.
Bài 6: Cho hình bình hành ABCD. Gọi I, K lần lượt là trung điểm của CD, AB. Đường chéo BD cắt CK và CA lần lượt ở M và O.
a) Chứng minh tứ giác AKCI là hình bình hành.
b) Chứng minh ba điểm K, O, I thẳng hàng.
c) Chứng minh AI = 3. KM. d) Đường thẳng AM cắt BC tại E . Tính tỉ số \(\dfrac{EI}{BD}\)
cho hình thang cân ABCD ( AB//CD ; AB<CD) . Qua A kẻ đường thẳng song song với BC cắt CD tại M
a) tứ giác ABCM là hình gì ? vì sao?
b) Gọi I là trung điểm của AM , H là trung điểm của AC , đường thẳng IH cắt BC tại K . Chứng minh K là trung điểm của BC
c) chứng minh DC - AB < 4BK
giúp mình với