Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Valhein TV

Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm các cạnh AB, BC, CD, DA và I, K là trung điểm các đường chéo AC, BD. Chứng minh:

a) Các tứ giác MNPQ, INKQ là hình bình hành. 

b) Các đường thẳng MP, NQ, IK đồng quy. 

Sora Kazesawa
4 tháng 1 2019 lúc 22:51

A B C D M N P Q K I O

a) Xét tam giác ADC có:

AQ=QD (Q trung điểm AD)

DP=PC (P trung điểm DC)

=> QP là đường trung bình tam giác ADC ()

=> QP//AC;QP=\(\frac{1}{2}AC\)(1)

Xét tam giác ABC có:

AM=MB (M là trung điểm AB)

BN=NC (N là trung điểm BC)

=> MN là đường trung bình tam giác ABC (đn đường trung bình tam giác)

=> MN//AC;MN=\(\frac{1}{2}AC\)(2)

Từ (1) và (2)=> MN//QP (cùng //AC); MN=QP (=\(\frac{1}{2}AC\))

=> Tứ giác MNPQ là hình bình hành (dhnbhbh)

=> QN cắt PM tại O (*)

Xét tam giác ADB có:

DQ=QA (Q là trung điểm AD)

DK=KB (K là trung điểm DB)

=> QK là đường trung bình tam giác ADB (đn đường trung bình tam giác)

=> QK//AB,QK=\(\frac{1}{2}AB\)(3)

Xét tam giác ABC có:

IA=IC (I là trung điểm AC)

CN=NB (N là trung điểm CB)

=> IN là đường trung bình tam giác ABC (đn đường trung bình tam giác)

=> IN//AB;IN=\(\frac{1}{2}AB\)(4)

Từ (3) và (4) => IN//QK (cùng //AB);IN=QK (=\(\frac{1}{2}AB\))

=> Tứ giác QKNI là hình bình hành (dhnbhbh)

=> QN cắt IK tại O (**)

b)Từ (*) và (**)=> QN cắt PM cắt KI tại O

=> QN,PM,IK đồng quy tại O (đpcm)


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Khánh Linh
Xem chi tiết
Thị Thanh Nguyễn
Xem chi tiết
nguyen thi huyen trang
Xem chi tiết
nguyễn thi kim
Xem chi tiết
Minh Nguyệt
Xem chi tiết
Lữ thị Xuân Nguyệt
Xem chi tiết
Đào Nguyễn Hải Nhung
Xem chi tiết
Nguyễn Sỹ Thành
Xem chi tiết