Cho tứ giác ABCD. Gọi I là trung điểm BC. Xác định điểm M sao cho 3 P A → + P B → + P C → + P D → = 0 →
A. P là trung điểm BG
B. P là trung điểm AG
C. P là trung điểm CG
D. P là trọng tâm tam giác
Câu 8: Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điểm của AD và BC, có bao nhiêu vectơ bằng với DM từ các điểm đã cho? A. 3. B. 4. C. 5. D. Câu 9: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chọn khẳng định đúng trong các khẳng định sau.
A. AD BC . B. MQ PN . C. MN QP . D. AB DC .
Câu 10: Cho tam giác ABC với trực tâm H, D là điểm đối xứng với B qua tâm O của đường tròn ngoại tiếp tam giác ABC. Khẳng định nào sau đây là đúng
A. HA CD và AD CH .
B. HA CD và DA HC .
C. HA CD và AD HC .
D. HA CD và AD HC và OB OD .
Câu 1: Cho ABCD là hình vuông cạnh bằng 1. Khi đó độ dài của AC bằng
A. 1. B. 2. C. 2. D. 3.
Câu 2: Cho tam giác ABC vuông tại C có cạnh AC cm BC cm 4 , 3 . Độ dài của vectơ AB là
A. 7 . cm B. 6 . cm C. 5 . cm D. 4 . cm
Câu 3: Cho hình vuông ABCD tâm O, cạnh 2a. Độ dài vectơ DO bằng
A. 2 2. a B. 2 . 2 a C. a 2. D. 2 2. a
Câu 4: Cho đoạn thẳng AB cm 10 , điểm C thỏa mãn AC CB . Độ dài vectơ AC là
A. 10 . cm B. 5 . cm C. 20 . cm D. 15 . c
Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Gọi O là giao điểm các đường chéo của tứ giác MNPQ, trung điểm các đoạn thẳng AC, BD tương ứng là I, J. Khẳng định nào sau đây đúng?
A. O I → = O J →
B. O A → = O C →
C. O B → = O D →
D. O I → = - O J →
Cho tam giác ABC có trọng tâm G. M, N lần lượt là trung điểm của AB, BC. Lấy 2 điểm I, J sao cho \(2\overrightarrow{IA}+3\overrightarrow{IC}=\overrightarrow{0}\), \(2\overrightarrow{JA}+5\overrightarrow{JB}+3\overrightarrow{JC}=\overrightarrow{0}\)
a) CM: M, N, J thẳng hàng với J là trung điểm của BI
b) Gọi E là điểm thuộc AB sao cho \(\overrightarrow{AE}=k.\overrightarrow{AB}\). Xác định k sao cho C, E, J thẳng hàng
Cho tam giác ABC, gọi D là điểm trên cạnh BC sao cho vecto BD=2/3 vecto BC và I là trung điểm của AD. Gọi M là điểm thỏa mãn vecto AM=2/5 vecto AC. Chứng minh B,I,M thẳng hàng
Cho tam giác ABC, gọi D là điểm trên cạnh BC sao cho vecto BD=2/3 vecto BC và I là trung điểm của AD. Gọi M là điểm thỏa mãn vecto AM=2/5 vecto AC. Chứng minh B,I,M thẳng hàng
Cho tam giác ABC có M là trung điểm của trung tuyến AD, N là điểm thỏa mãn hệ thức: 3vecto AN=vectoAC
a) Chứng minh rằng 3 điểm B, M, N thẳng hàng.
b) Trên AB lấy điểm I sao cho vecto AI=2/3AB, trên AC lấy điểm J sao cho vecto AJ=2/5 vecto AC .
Chứng minh rằng 3 điểm I, M, J thẳng hàng.
giúp em làm phần b với ạ,,em cần gấp ạ
Cho tứ giác ABCD, I và J là trung điểm của AB và CD,O là trung điểm I. M là điểm bất kỳ.Chứng minh: a) vecto OA + vecto OB + vecto OC + vecto OD = vecto O b) vecto MA + vecto MB + vecto MC + vecto MD = 4MO c) vecto AC + vecto BD = vecto 2IJ
Cho ΔABC. Gọi M là trung điểm AB, D là trung điểm BC, N là điểm thuộc AC sao cho \(\overrightarrow{CN}\) = 2\(\overrightarrow{NA}\) . K là trung điểm MN. Chứng minh KD = \(\dfrac{1}{4}\)\(\overrightarrow{AB}\) + \(\dfrac{1}{3}\overrightarrow{AC}\).