Cho tứ giác ABCD có góc \(\widehat{C}=40^o\), \(\widehat{D}=80^o\), AD = BC . Gọi E, F, M, N lần lượt là trung điểm của AB, DC, DB, AC.
a) Chứng minh tứ giác EMFN là hình thoi.
b) Tính \(\widehat{MFN}\)
Cho tứ giác ABCD có \(\widehat{C}=40^o,\widehat{D}=80^o\) , \(AD=BC\). Gọi E, F, M, N lần lượt là trung điểm của AB, DC, DB, AC.
a) Chứng minh tứ giác EMFN là hình thoi.
b) Tính góc \(\widehat{MFN}\)
Cho tứ giác ABCD có \(\hat{A}\)= 100o, \(\widehat{B}\)= 100o, \(\widehat{D}\)= 80o. Lấy E,F lần lượt là trung điểm của AD, BC. O là giao điểm của AC và BD.
a) CMR: ABCD là hình thang cân và tính góc C.
b) Cho AB = 20 cm, CD = 30cm. Tính EF, EO, FO.
c) CMR: \(\Delta\)ABC = \(\Delta\)ABD, \(\Delta\)ACD = \(\Delta\)BDC, \(\Delta\)AEO = \(\Delta\)BFO.
d) Giả sử AD = 20cm. Tính BC, góc ABD, góc ADB, góc AOD, góc AOB.
Bài 1 : Cho hình vuông ABCD có cạnh bằng 16cm, O là giao điểm của AC và BD. Gọi
M, N, P, Q lần lượt là trung điểm của OA, OB, OC, OD.
a) Tứ giác MNPQ là hình gì? Vì sao?
b) Tính diện tích phần hình vuông ABCD nằm ngoài tứ giác MNPQ.
Bài 2 : Cho hình thang ABCD, BC // AD. Các đường chéo cắt nhau tại O. Chứng minh
rằng: SOAB = SOCD .
Bài 3 :Tính diện tích hình thang ABCD (AB//CD), biết AB = 42cm, \(\widehat{A}=45^0,\widehat{B}=60^0\) và chiều cao hình thang bằng 18
1.Cho hình thang cân ABCD(AB//CD), góc BDC=45o. Gọi O là giao điểm của AC và BD.
a. CM tam giác DOC vuông cân
b. Tính diện tích của hình thang ABCD, biết BD=6cm
2. a. Tìm x của tứ giác ABCD, biết góc A=60 độ, góc C= 90 độ, góc D=63 độ
b. Cho hình thang ABCD(AB//CD). E,F lần lượt là trung điểm AD, BC. Tính độ dài đoạn thẳng EF, biết AB=3cm,CD=9cm
Cho hình thoi ABCD có \(\widehat{D}=60^o\). E, H, G, F lần lượt là trung điểm của AB, BC, CD, DA.
a) Chứng minh tứ giác EFGH là hình chữ nhật
b) Cho AG cắt HF tại J. Chứng minh rằng HF = 4FJ
c) Gọi I là trung điểm FJ và P là giao điểm của EH và DB. Chứng minh IG vuông góc với IP.
d) Cho AB = 2cm. Tính độ dài IP
Bài 1: Tứ giác ABCD có AB=BC=CD và Góc D+B=180 độ
a, Chứng minh AC là phân giác góc A
b, Tứ giác ABCD là hình gì? tại sao?
Bài 2: Cho hình thang ABCD (AB//CD). M là trung điểm của AD sao cho CM là phân giác góc C. Biết MB=6cm, MC=8cm
a, BC=?
b, So sánh khoảng cách từ M đến BC và đường cao hình thang.
Bài 3: Cho tứ giác ABCD, AC là phân giác góc A. Gọi I,K lần lượt là trung điểm của AD,BC. IK cắt AC tại S.
a, Cmr: S là trung điểm của AC
b, Từ C kẻ Cx//AD. Cx cắt AB tại M. Tứ giác ABCD là hình gì? tại sao?
Bài 4: Cho tứ giác ABCD gọi E,F lần lượt là trung điểm của BC và AD.
Cmr:
a,EF<(AB+CD)/2
b, Tứ giác ABCD<=>EF<(AB+CD)/2
Bài 5: Cho hình thang ABCD (AB//CD), AB<CD. AC cắt BD tại O. Biết gócDOC=60 độ
AD=6cm. P,Q,R lần lượt là trung điểm của OA,OD. Tính chu vi tam giác PQR
Bài 6: Cho tam giác ABC, D thuộc AB sao cho BD=1/4 AB, E là trung điểm vủa BC. Đường thẳng DE cắt AC tại F. Cmr: CF=1/2AC.
Các bạn xem làm giúp mình với nhé mình sắp phải nộp rồi
Cho tứ giác ABCD có AD=BC. Gọi M,N lần lượt là trung điểm của AB và CD. Đường thẳng MN cắt AC và BC tại E và F. Chứng minh \(\widehat{AEM}\)=\(\widehat{MFB}\)