Cho tứ giác ABCD có AD = BC , gọi M và N là trung điểm của AB và CD . Đường thẳng qua M sog sog AD cắt BD tại E , đường thẳng qua M sog sog BC cắt AC tại F . Cmr : MN vuông góc EF .
Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. Biết AC = 6cm, BD = 8cm. Gọi M, N, P, Q theo thứ tự là trung điểm các cạnh AB, BC, CD, DA. Gọi X, Y, Z, T theo thứ tự là trung điểm các cạnh MN, NP, PQ, QM. Tính diện tích của tứ giác XYZT.
Cho hình bình hành ABCD, 2 đường chéo cắt nhau tại O. Kẻ AH vuông góc BD, CD vuông góc BD (AC ko vuông góc BD)
a) C/m tứ giác AHCK là hình bình hành
b)Biết AH cắt CD tại M, CK cắt AB tại N. C/m O là trung điểm của MN
Cho tứ giác ABCD có các đường chéo AC và BD cắt nhau ở O và AD vuông góc với AC ,
BD vuông góc với BC. Gọi E là giao điểm của ad và bc. Gọi d là đường thẳng đi qua trung điểm EO và CD
a) C/m : d là đường trung trực của đoạn AB
Cho tứ giác ABCD có các đường chéo AC và BD cắt nhau ở O và AD vuông góc với AC ,
BD vuông góc với BC. Gọi E là giao điểm của ad và bc. Gọi d là đường thẳng đi qua trung điểm EO và CD
a) C/m : d là đường trung trực của đoạn AB
Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA. C/minh tứ giác MNPQ là hình chữ nhật
Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. Biết AC = 6cm, BD = 8cm. Gọi M, N, P, Q theo thứ tự là trung điểm các cạnh AB, BC, CD, DA. Gọi X, Y, Z, T theo thứ tự là trung điểm các cạnh MN, NP, PQ, QM. Chứng minh rằng MNPQ là hình chữ nhật.
Cho tứ giác ABCD có các đường chéo AC và BD cắt nhau ở O và AD vg góc với AC , BD vg góc với BC. Gọi E là giao điểm của EO và CD. Gọi d là đường thẳng đi qua trung điểm EO và CD a) C/m : d là đường trung trực của đoạn AB
Bài 1 (4đ). Cho tứ giác ABCD có AB//CD. Gọi M, N lần lượt là trung điểm của AC và BD. Gọi O là giao điểm của hai đường thẳng theo thứ tự đi qua M và N tương ứng vuông góc với BC và AD.
a) Chứng minh rằng MN//CD.
b) Chứng minh rằng OC = OD.
CÁC BẠN GIÚP MÌNH VỚI
bài 1: cho hình thang abcd có ab // cd , ab=bc .
a,CM : ca là tia phân giác của góc bcd
b,gọi m,n,e,f lần lượt là trung điểm của ad,bc,ca,bd. CM m,n,e,f thẳng hàng
bài 2 cho tứ giác abcd có ac vuông góc với bd gọi m,n,l lần lượt là trung điểm của ab,ad,ac . từ m kẻ đường thẳng vuông góc với cd cắt ac tại h .
CM : h là t.tâm tam giác mnl