cho tứ giác ABCD có các cặp cạnh đối AB và CD, AD và BC cắt nhau tại M, N. chứng minh các trung điểm I, J, K của AC, BD, MN thẳng hàng
Cho tứ giác ABCD có các cặp cạnh đối AB và CD, AD và BC cắt nhau tại M, N. Chứng minh các trung điểm I, J, K của AC, BD, MN thẳng hàng
Cho tứ giác ABCD nội tiếp đường tròn (O) sao cho điểm O nằm trong tứ giác ABCD và AB<CD. AC cắt BD tại E.
a) Chứng minh EA.EC=EB.ED
b) Gọi K trung điểm BC. Đường thẳng qua E và vuông góc OE cắt AD và BC lần lượt tại M,N. Chứng minh tứ giác ENKO nội tiếp
c) Chứng minh E trung điểm MN
d) Qua D kẻ đường vuông góc với AD. Đường thẳng này cắt đường thẳng vuông góc BC tại C ở F. Chứng minh E,O,F thẳng hàng
Cho tứ giác ABCD có AD=BC. Gọi AC cắt BD tại I. K và L lần lượt là tâm nội tiếp của tam giác AID và tam giác BIC. M và N lần lượt là trung điểm của AB và CD. Chứng minh rằng MN chia đôi KL ?
Giải bài toán hình lớp 9 Cho hình thang ABCD (AB//CD) nội tiếp (O) . Các đường chéo AC,BD cắt nhau tại E , các cạnh bên AD,BC kéo dài cắt nhau tại F. a) Chứng minh tam giác OAC= tam giác OBD b) Chứng minh tứ giác ADOE và tứ giác AOFC nội tiếp c) Gọi M,N theo thứ tự là trung điểm của BD,AC và P là hình chiếu của B lên dường thẳng CD.Chứng minh tứ giác MNCP là hình bình hành d) Cho góc DOC=120 độ , góc AOB=90 độ , tính diện tích tứ giác ABCD theo R
Cho tam giác ABC đều, trên các cạnh AB,BC,AC lần lượt lấy các điểm E và D sao cho \(\frac{BE}{AE}=\frac{1}{2};\frac{AD}{CD}=\frac{1}{2}\). Các đoạn thẳng BD và CE cắt nhau tại M, đường trung trực của CM cắt BC ở K. Gọi N là điểm đối xứng của C qua K. CM: A,M,N thẳng hàng
1. Cho tứ giác ABCD có AB cắt CD tại M, AD cắt BC tại N.CMR trung điểm I,J,K của AC,BD,MN thẳng hàng
2. cho tam giác ABC có \(A';B';C'\)là trung điểm BC,AC,AB .M nằm trong tam giác, các điểm \(A_1;B_1;C_1\)là giao điểm của MA,MB,MC với B'C';C'A';A'B'. CM: \(A'A_1,B'B_1,C'C_1\)đồng quy.
P.s : A/d Menelaus,Ceva
Cho hình thang ABCD (AB // CD). Gọi O là giao điểm của AC và BD. I là giao điểm của AD và BC. Gọi M, N lần lượt là trung điểm của AB và CD. a) Chứng minh rằng I, M, O, N thẳng hàng b) Giả sử CD=3AB và diện tích hình thang ABCD bằng a, Hãy tính diện tích tứ giác IAOB theo a
Cho hình thang cân ABCD (AB > CD, AB // CD) nội tiếp trong đường tròn (O). Kẻ các tiếp tuyến với đường tròn (O) tại A và D chúng cắt nhau ở E. Gọi M là giao điểm của hai đường chéo AC và BD.
1. Chứng minh tứ giác AEDM nội tiếp được trong một đường tròn.
2. Chứng minh AB // EM.
3. Đường thẳng EM cắt cạnh bên AD và BC của hình thang lần lượt ở H và K. Chứng minh M là trung điểm HK.
4. Chứng minh: 2/HK=1/AB+1/CD