a/ Xét tam giác AHD và tam giác BCH có:
góc AHD = góc BHC = 90 độ (gt)
góc DAH = góc DBC (hai góc = nhau cùng nhìn cạnh DC, tứ giác ABCD nội tiếp)
=> tam giác AHD đồng dạng tam giác BHC (g.g)
=> HA/HB = HD/HC
=> HA.HC = HB.HD
a/ Xét tam giác AHD và tam giác BCH có:
góc AHD = góc BHC = 90 độ (gt)
góc DAH = góc DBC (hai góc = nhau cùng nhìn cạnh DC, tứ giác ABCD nội tiếp)
=> tam giác AHD đồng dạng tam giác BHC (g.g)
=> HA/HB = HD/HC
=> HA.HC = HB.HD
Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chứng minh M, N, P, Q cùng nằm trên một đường tròn
Cho hình bình hành ABCD có đỉnh D nằm trên đường tròn đường kính AB= 2R. Hạ BN và DM cùng vuông góc với đường chéo AC
a) chứng minh tứ giác CBMD nội tiếp
b) chứng minh rằng BD*DC=DN*AC
Giúp với
Cho tứ giác ABCD nội tiếp đường tròn (O; R) có hai đường chéo AC và BD vuông góc với nhau. Chứng minh rằng A B 2 + C D 2 = 4 R 2
cho tứ giác ABCD nội tiếp đường tròn tâm (O) đường kính AB. Hai đường chéo AC và BD cắt nhau tại I. Kẻ IE vuông góc với AB. Chứng minh rằng:
a) Tứ giác AIDE nội tiếp một đường tròn.
b) Tia BD là tia phân giác của góc CDE.
c) Trường hợp AB không song song với CD. Chứng minh 4 điểm O, E, D, C cùng thuộc một đường tròn.
Cho tứ giác ABCD nội tiếp đường tròn đường kính AB. Hai đường chéo AC và BD vắt nhau tại E , F là hình chiếu vuông góc của E trên ABa Chứng minh tứ giác ADEF nội tiếpb Gọi N là giao điểm của CF và BD. Chứng minh BN.ED BD.EN
Cho tứ giác ABCD nội tiếp đường tròn đường kính AB. Hai đường chéo AC và BD vắt nhau tại E , F là hình chiếu vuông góc của E trên AB
a) Chứng minh tứ giác ADEF nội tiếp
b) Gọi N là giao điểm của CF và BD. Chứng minh BN.ED = BD.EN
Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. gọi M và N lần lượt là trung điểm của AB và AD. Kẻ ME vuông góc với CD tại E, NF vuông góc với BC tại F. chứng minh M,N,E,F cùng thuộc một đường tròn.
Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau . Gọi M,N,P,Q lần lượt là trung điểm của AB,BC,CD,DA. Chứng minh M,N,P,Q cùng nằm trên một đường tròn.
Làm ơn giúp mình với !!! Cảm ơn nhiều !!!
Cho tứ giác ABCD nội tiếp đường tròn (O) có hai đường chéo AC và BD vuông góc với nhau tại I.Gọi E,F,G,H lần lượt là trung điểm của các cạnh AB, BC,CD,AD.C/m
1) tứ giác EFGH là hcn
2) GIEO là hbh
3)hình chiếu của điểm I trên các cạnh và trung điểm của các cạnh của tứ giác ABCD cùng nằm trên một đường tròn