Đáp án B
Gọi N, P, Q lần lượt là trung điểm của Ad, CD, BC.
Ta có: B D ⊥ A H C nên B D ⊥ A C . Do đó M N ⊥ N P . Mà MNPQ là hình bình hành.
Thiết diện là hình vuông MNPQ.
Đáp án B
Gọi N, P, Q lần lượt là trung điểm của Ad, CD, BC.
Ta có: B D ⊥ A H C nên B D ⊥ A C . Do đó M N ⊥ N P . Mà MNPQ là hình bình hành.
Thiết diện là hình vuông MNPQ.
Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình thang vuông tại A và B với AB = BC = a, AD = 2a. Cạnh SA=2a và SA vuông góc với mặt phẳng (ABCD). Gọi M là trung điểm của cạnh AB và α là mặt phẳng qua M và vuông góc với AB. Diện tích thiết diện của mặt phẳng với hình chóp S.ABCD là
A. S = a 2
B. S = 3 a 2 2
C. S = a 2 2
D. S = 2 a 2
Cho tứ diện ABCD. Gọi M là trung điểm của AB. Cắt tứ diện ABCD bởi mặt phẳng đi qua M và song song với BC và AD, thiết diện thu được là hình gì?
A. Tam giác đều
B. Tam giác vuông
C. Hình bình hành
D. Ngũ giác
Cho tứ diện ABCD. Điểm M thuộc đoạn AC M (khác A M, khác C). Mặt phẳng α đi qua M song song với AB và AD. Thiết diện của α với tứ diện ABCD là hình gì?
A. Hình tam giác.
B. Hình bình hành.
C. Hình vuông
D. Hình chữ nhật.
Cho tứ diện ABCD. Gọi M là một điểm bất kì nằm trên đoạn AC (khác A và C). Mặt phẳng (P) qua M và song song với các đường thẳng AB, CD. Thiết diện của (P) với tứ diện đã cho là hình gì?
A. Hình vuông
B. Hình bình hành
C. Hình chữ nhật
D. Hình thang cân
Cho tứ diện ABCD. Điểm M thuộc đoạn AC (M khác A, M khác C). Mặt phẳng α đi qua M song song với AB và AD. Thiết diện của α với tứ diên ABCD là hình gì?
A. hình tam giác
B. hình bình hành
C. hình vuông
D. hình chữ nhật
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, mặt bên SAB là tam giác vuông tại A, S A = a 3 , S B = 2 a Điểm M nằm trên đoạn AD sao cho AM=2MD. Gọi (P) là mặt phẳng qua M và song song với (SAB). Tính diện tích thiết diện của hình chóp cắt bởi phẳng (P)?
A. 5 a 2 3 18
B. 5 a 2 3 6
C. 4 a 2 3 9
D. 4 a 2 3 3
Cho hình chóp S.ABCD có đáy ABCD là hình thang cân (AD//BC), BC=2a, AB=AD=DC=a với a>0. Mặt bên SBC là tam giác đều. Gọi O là giao điểm của AC và BD. Biết SD vuông góc AC. M là một điểm thuộc đoạn OD; MD=x với x>0; M khác O và D. Mặt phẳng (α) đi qua (α) đi qua M và song song với hai đường thẳng SD và AC cắt khối chóp S.ABCD theo một thiết diện. Tìm x để diện tích thiết diện là lớn nhất?
A. a 3 4
B. a 3
C. a 3 2
D. a
Cho hình chóp S.ABCD có SA vuông góc với đáy, ABCD là hình vuông cạnh a 2 , S A = 2 a . Gọi M là trung điểm của cạnh SC, α là mặt phẳng đi qua A, M và song song với đường thẳng BD. Tính diện tích thiết diện của hình chóp S.ABCD bị cắt bởi mặt phẳng α .
A. a 2 2
B. 4 a 2 3
C. 4 a 2 2 3
D. 2 a 2 2 3
Cho hình chóp S.ABC có đáy là tam giác vuông tại B, AB = 1, AC = 2; cạnh bên SA vuông góc với đáy và SA = 1. Gọi I là trung điểm của AC. Xét M là điểm thay đổi trên cạnh AB sao cho A M = x 0 < x < 1 và (P) là mặt phẳng đi qua M, song song với SA và IB. Thiết diện của hình chóp với mặt phẳng (P) có diện tích lớn nhất thì giá trị của x bằng.
A. 2 3
B. 3 4
C. 1 3
D. 1 2