Cho tứ diện ABCD có tam giác ABC là tam giác cân với B A C = 120 0 , A B = A C = a . Hình chiếu của D trên mặt phẳng ABC là trung điểm của BC. Tính bán kính R của mặt cầu ngoại tiếp tứ diện ABCD biết thể tích của tứ diện ABCD là V = a 3 16 .
A. R = 91 a 8 .
B. R = a 13 4 .
C. R = 13 a 2 .
D. R = 6 a .
Cho tứ diện ABCD có AB=AC= 2 , DB=DC= 3 , góc giữa hai mặt phẳng (ABC) và (DBC) bằng 45 độ. Gọi H là hình chiếu vuông góc của A trên mặt phẳng (DBC) sao cho H và D nằm về hai phía của BC. Tính diện tích S của mặt cầu ngoại tiếp tứ diện ABCD
A. 5 π
B. 5 π 4
C. S = 5 π 8
D. S = 5 π 16
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối chứa điểm A có thể tích V. Tính V
A. 11 2 a 3 216
B. 7 2 a 3 216
C. 2 a 3 8
D. 13 2 a 3 216
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối chứa điểm A có thể tích V. Tính V.
A. 11 2 a 3 216
B. 7 2 a 3 216
C. 2 a 3 18
D. 13 2 a 3 216
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm AB, BC và điểm P là điểm đối xứng với B qua D. Mặt phẳng (MNP) chia tứ diện thành hai phần có tỉ số thể tích là
A. 1 2
B. 7 11
C. 7 18
D. 11 18
Cho tứ diện ABCD có A B = A C = 2 , B C = 2 , D B = D C = 3 , góc giữa hai mặt phẳng A B C và D B C bằng 45 ° . Gọi H là hình chiếu vuông góc của A trên mặt phẳng D B C sao cho H và D nằm về hai phía của BC. Tính diện tích S của mặt cầu ngoại tiếp tứ giác ABCD.
A. S = 5 π
B. S = 5 π 4
C. S = 5 π 8
D. S = 5 π 16
Cho tứ diện ABCD có các mặt ABC và BCD là các tam giác đều cạnh 2, hai mặt phẳng (ABD) và (ACD) vuông góc với nhau. Tính bán kính mặt cầu ngoại tiếp tứ diện ABCD.
A. 2 2
B. 2
C. 2 3 3
D. 6 3
Cho tứ diện ABCD có BC=a, C D = a 3 , B C D ^ = A B C ^ = A D C ^ = 90 ° . Góc giữa hai đường thẳng AD và BC bằng 60 ° . Tính bán kính R của mặt cầu ngoại tiếp tứ diện ABCD.
A. a 3 2
B. a 3
C. a
D. a 7 2
Cho tứ diện ABCD có hai mặt phẳng (ABC) và (BCD) vuông góc với nhai. Biết tam giác ABC đêì cạnh a, tam giá BCD vuông cân tại D. Bán kính mặt cầu ngoại tiếp tứ diện ABCD bằng
A . a 2 3
B . a 3 3
C . 2 a 3 3
D . a 3 2