Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm AB, BC, CD, DA. Khẳng định nào sau đây đúng
A.
B.
C.
D.
Cho tứ diện ABCD và đặt A B → = a → , A C → = b → v à A D → = c → . Gọi M là trung điểm của CD.
Vecto C D → bằng:
A. c → - b →
B. b → - c →
C. c → + b →
D. a → + b → + c →
Cho hình hộp ABCD.A’B’C’D’. Gọi M, N lần lượt là trung điểm của CD và DD’; G và G’ lần lượt là trọng tâm của hai tứ diện A’D’NM và BCC’D’. Đặt A B → = a → ; A A ' → = b → ; A D → = c → .
Vecto M N → bằng:
A. 1 2 c → - a →
B. 1 2 c → - b →
C. 1 2 b → - a →
D. 1 2 a → - b →
Cho tứ diện ABCD và đặt A B → = a → , A C → = b → v à A D → = c → . Gọi M là trung điểm của CD.
Vecto 2 B M → bằng:
A. - 2 a → + b → + c →
B. - a → + b → + c →
C. a → + b → + c →
D. a → - 2 b → + c →
Gọi M; N lần lượt là trung điểm của các cạnh AB và CD của tứ giác ABCD. Mệnh đề nào sau đây đúng?
A.
B.
C.
D.
Cho hình thang ABCD có AB // CD và AB = 2a, BC = CD = DA = a. Đường thẳng d vuông góc với mặt phẳng (ABCD) tại A. Gọi S là một điểm duy nhất thay đổi trên d. (P) là một mặt phẳng qua A vuông góc với SB tại I và cắt SC, SD lần lượt tại J, K.
a) Chứng minh tứ giác BCJI, AIJK là các tứ giác nội tiếp.
b) Gọi O là trung điểm của AB, O' là tâm đường tròn ngoại tiếp tứ giác BCJI. Chứng minh rằng OO' ⊥ (SBC).
c) Chứng minh rằng khi S thay đổi trên d thì JK luôn luôn đi qua một điểm cố định.
d) Tìm một điểm cách đều các điểm A, B, C, D, I, J, K và tìm khoảng cách đó.
e) Gọi M là giao điểm của JK và (ABCD). Chứng minh rằng AM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC.
f) Khi S thay đổi trên d, các điểm I, J, K lần lượt chạy trên đường nào.
Bt2: cho hình chóp S.ABCD đáy là tứ giác lồi có AB>CD .gọi M,N lần lượt là trung điểm của cạnh SA và SD .a) tìm giao tuyến (SAB) và (SCD).b) tìm giao tuyến của (MNC) và (ABCD).c)tìm giao điểm của MN và (ABN).d) tìm thiết diện của hình chóp vs mp (BMN)
Cho tứ giác ABCD. Gọi M; N; P; Q lần lượt là trung điểm của AB; BC; CD ; DA. Khẳng định nào sai.
A.
B.
C.
D.
Trong không gian cho mặt phẳng (P) và ba điểm A, B, C không nằm trong (P). Gọi M, N, K lần lượt là giao điểm của các đường thẳng AB, AC, BC với mặt phẳng (P)( A, B, C không thẳng hàng). Khẳng định nào sau đây là đúng.
A. Ba điểm M, N, K thẳng hàng.
B. Ba điểm M, N, K trùng nhau
C. Ba điểm M, N, K lập thành tam giác cân.
D. M, N, K bất kì