\(\dfrac{a}{b}=\dfrac{c}{d}\)
=>\(\dfrac{b}{a}=\dfrac{d}{c}\)
=>\(\dfrac{b}{a}+1=\dfrac{d}{c}+1\)
=>\(\dfrac{b+a}{a}=\dfrac{d+c}{c}\)
=>\(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{b}{a}=\dfrac{d}{c}\)
\(\Rightarrow\dfrac{b}{a}+1=\dfrac{d}{c}+1\)
\(\Rightarrow\dfrac{b+a}{a}=\dfrac{d+c}{c}\)
\(\Rightarrow\dfrac{a}{a+b}=\dfrac{c}{c+d}\left(đpcm\right)\)