(Chừng nào vẽ hình mới đẹp? -.-)
a) Ta có: \(\Delta ABC\)cân tại \(A\Rightarrow AH\)vừa là đường cao, vừa là phân giác, (vừa là trung tuyến (*))
\(\Rightarrow\widehat{BAH}=\widehat{CAH}\)
b) Từ (*) ở câu a \(\Rightarrow BH=CH=\frac{BC}{2}=\frac{8}{2}=4\left(cm\right)\)
Xét \(\Delta ACH\)vuông tại \(H\)có:
\(AH^2+HC^2=AC^2\left(pytago\right)\)
\(3^2+4^2=AC^2\)( Vì \(3^2+4^2=25\))
\(\Rightarrow AC=\sqrt{25}=5\left(cm\right)\)
c) Xét \(\Delta AEH\)và \(\Delta ADH\)có:
\(AH\): chung
\(\widehat{AEH}=\widehat{ADH}=90\)độ
\(\widehat{BAH}=\widehat{CAH}\left(cmt\right)\)
\(\Rightarrow\Delta AEH=\Delta ADH\left(g.c.g\right)\)
\(\Rightarrow AE=AD\)(hai cạnh tương ứng)
d) Từ chứng minh câu c \(\Rightarrow HE=HD\)(hai cạnh tương ứng)
Ta có: \(\hept{\begin{cases}HE=HD\left(cmt\right)\\AE=AD\left(cmt\right)\end{cases}}\Rightarrow AH\)là đường trung trực của \(ED\)
\(\Rightarrow AH⊥ED\)tại trung điểm \(ED\)(Nhưng dẹp vụ trung điểm đó đi, cần cái vuông góc thôi!)
Ta lại có: \(\hept{\begin{cases}ED⊥AH\left(cmt\right)\\BC⊥AH\left(gt\right)\end{cases}}\Rightarrow ED\)// \(BC\left(đpcm\right)\)
Ps: Check lại coi có bị gì không nha bạn