Cho tam giác ABC nhọn có các đường cao AA';BB';CC'. Gọi H là trực tâm tam giác ABC. CMR:\( {(AB+BC+AC)^2 \over AA'^2+BB'^2+CC'^2} >=4\)
Cho tam giác ABC có các đường cao AA', BB', CC' cắt nhau tại H. Chứng minh HA'/AA'=HB'/BB'=HC'/CC'
Cho tam giác ABC nhọn. Các đường cao AA’, BB’, CC’ cắt nhau tại H. Tổng H A ' A A ' + H B ' B B ' + H C ' C C ' bằng?
Cho tam giác nhọn, đường cao AA', BB', CC' giao nhau tai H.
CMR: \(\frac{AH}{AA'}\)+\(\frac{BH}{BB'}\)+\(\frac{CH}{CC}\)=2
Cho tam giác nhọn ABC, các đường cao AA', BB', CC' cắt nhau tại H. Chứng minh rằng: H A ' A A ' + H B ' B B ' + H C ' C C ' = 1
cho tam gaics abc nhọn aa',bb',cc'là đường cao của tam giác abc cắt nhau tại h . chứng minh rằng ha'/ha + hb'/hb +hc'/hc >= 3/2
cho tam giác ABC nhọn, đường cao AA',BB',CC' cắt nhau tại H. Trung tuyến AM, G là trọng tâm. Chứng minh GH//BC
Cho tam giac ABC nhọn ,đường cao AA' ,BB',CC' cắt nhau tại H.
CMR: \(\frac{AH}{AA'}\)+ \(\frac{BH}{BB'}\)+\(\frac{BH}{BB'}\)=2
Giusp mình với .Làm được mình cảm ơn nhiều^^,