a: AE là phân giác của góc BAC
=>EB=EC
mà OB=OC
nên OE là trung trực của BC
=>OE vuông góc BC
=>OE//AH
b: Điểm M ở đâu vậy bạn?
a: AE là phân giác của góc BAC
=>EB=EC
mà OB=OC
nên OE là trung trực của BC
=>OE vuông góc BC
=>OE//AH
b: Điểm M ở đâu vậy bạn?
Cho tam giác nhọn ABC (AB < AC ) nội tiếp đường tròn (O). Kẻ đường cao AH của tam giác ABC và đường kính AD của đường tròn (O). Từ hai điểm B và C kẻ BE ⊥ AD tại E và CF ⊥ AD tại F.
a. Chứng minh rằng tứ giác ABHE nội tiếp.
b. Chứng minh rằng HE / /CD.
c. Gọi I là trung điểm của BC. Chứng minh rằng IE = IF .
Cho tam giác ABC nhọn nội tiếp (O). Đường cao AH cắt đường tròn tại I, Gọi AD là đường kính của (O).Tia phân giác góc BAC cắt đường tròn tại M. c/m
a) OM vuông góc BC
b) AM là tia phân giác của IAD
c) ID//BC
Cho tam giác ACB nhọn, nội tiếp trong đường tròn (O). Kẻ đường cao AH của tam giác ACB (H thuộc BC). Vẽ đường tròn tâm A bán kính AH cắt đường tròn (O) tại D và E. Gọi M là giao điểm của DE và AC. Chứng minh HM vuông góc với AC.
Cho tam giác ABC có 3 góc nhọn, nội tiếp đường tròn tâm O và AB<AC. Vẽ đường kính AD của đường tròn (O). Kẻ BE và CF vuông góc với AD( E,F thuộc AD). Kẻ AH vuông góc với AC(H thuộc BC).
a) Chứng minh 4 điểm A,B,H,E cùng nằm trên một đường tròn và tam giác ABH đồng dạng với tam giác ADC.
b) Chứng minh HE // CD
c) Gọi M là trung điểm của BC. Chuwngd minh ME=MF.
Cho tam giác ABC nhọn (AB lớn hơn AC) nội tiếp đường tròn tâm O. Kẻ đường cao AH và đường kính AD. Gọi M là hình chiếu của B trên AD. a,Tứ giác ABMH nội tiếp b, Tiếp tuyến tại D cắt AB, AC lần lượt tại E và F.CM :AB.AE = AC.p AF c,Gọi I là trung điểm BC. Đường thẳng qua I song song với DC cắt BM tại K. Tia DK cắt đường tròn tại S. BC và EF cắt nhau tại Q.CM : Tứ giác SBKI nội tiếp d, SQ là tiếp tuyến của đường tròn tâm O
Cho tam giác ABC (AB<AC) nội tiếp đường tròn đường kính BC , đường cao AH . Gọi I là giao điểm các đường phân giác . Tia phân giác góc AHB cắt tia BI tại J , tia phân giác của góc AHC cắt CI tại K . cm tam giác ABC đồng dạng tam giác HJK
Cho (O) đường kính BC , điểm A bất kỳ thuộc (O) : AB<AC. Kẻ dây AD vuông góc với BC , các đường thẳng AC và BDF cắt nhau tại E . Từ E kẻ EH vuông góc với BC tại H . cm khi A di chuyển trên (O) : AB<AC thì HA luôn tiếp xúc với đường tròn cố định
Ai đúng mình cho 4 tick nha
Cho tam giác ABC (AB<AC) nội tiếp đường tròn đường kính BC , đường cao AH . Gọi I là giao điểm các đường phân giác . Tia phân giác góc AHB cắt tia BI tại J , tia phân giác của góc AHC cắt CI tại K . cm tam giác ABC đồng dạng tam giác HJK
Cho (O) đường kính BC , điểm A bất kỳ thuộc (O) : AB<AC. Kẻ dây AD vuông góc với BC , các đường thẳng AC và BDF cắt nhau tại E . Từ E kẻ EH vuông góc với BC tại H . cm khi A di chuyển trên (O) : AB<AC thì HA luôn tiếp xúc với đường tròn cố định
Ai đúng mình cho 4 tick nha
Cho tam giác ABC (AB<AC) nội tiếp đường tròn đường kính BC , đường cao AH . Gọi I là giao điểm các đường phân giác . Tia phân giác góc AHB cắt tia BI tại J , tia phân giác của góc AHC cắt CI tại K . cm tam giác ABC đồng dạng tam giác HJK
Cho (O) đường kính BC , điểm A bất kỳ thuộc (O) : AB<AC. Kẻ dây AD vuông góc với BC , các đường thẳng AC và BDF cắt nhau tại E . Từ E kẻ EH vuông góc với BC tại H . cm khi A di chuyển trên (O) : AB<AC thì HA luôn tiếp xúc với đường tròn cố định
Ai đúng mình cho 4 tick nha