1.Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Gọi I và K lần lượt là hình chiếu của điểm D trên các đường thẳng BE và CF. Chứng minh rằng 1.Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Gọi I và K lần lượt là hình chiếu của điểm D trên các đường thẳng BE và CF. Chứng minh rằng b.IK //EF c. Trong các tam giác AEF, BDF, CDE có ít nhất một tam giác có diện tích nhỏ hơn hoặc bằng 1/4 diện tích tam giác ABC b.IK //EF
tam giác abc có 3 góc nhọn với các đường cao AD, BE, CF cắt tại H Chứng minh rằng AE.BF.CD=tanB.tanC=AD/HD
cho tam giác abc nhọn có đường cao ad,be,cf cắt nhau tại h. chứng minh tg aef~ tg abc và tanB.tanC=AD/HD
Cho tam giác ABC có ba góc nhọn với các đường cao AD, BE, CF cắt nhau tại H. Chứng minh rằng:
a) Sabc = 1/2.AB.BC.sinB và AE.BF.CD = AB.BC.CA.cosA.cosB.cosC
b) tanB.tanC = AD/HD
c) H là giao điểm ba đường phân giác trong của tam giác DEF
d) HB.HC/AB.AC + HC.HA/BC.BA + HA.HB/CA.CB = 1
Cho tam giác ABC có ba góc nhọn với các đường cao AD, BE, CF cắt nhau tại H. Chứng minh rằng:
a) Sabc = 1/2.AB.BC.sinB và AE.BF.CD = AB.BC.CA.cosA.cosB.cosC
b) tanB.tanC = AD/HD
c) H là giao điểm ba đường phân giác trong của tam giác DEF
d) HB.HC/AB.AC + HC.HA/BC.BA + HA.HB/CA.CB = 1
1) Cho tam giác ABC có ba góc nhọn, các đường cao AD. BE, CF cắt nhau tại H. Trên đoạn thẳng AD lấy điểm M sao cho BMC = 90 độ. Gọi S. S1 S2. lần lượt là diều tích các tam giác BAC, BMC, BHC. a) Chứng minh rằng: S1 = √S.S2
b) Gọi K.P lần lượt là hình chiếu của D trên BE.CF. Chứng minh rằng KP EF
CHo tam giác ABC có 3 =góc nhọn và H là trực tâm . Gọi M,N,P,Q lần lượt là giao điểm thứ 2 của các đường thảng AH, BH, CH với đường tròn ngoại tiếp tam giác ABC; D,E,F lần lượt là chân các đường cao hạt từ A,B,C của tam giác ABC. Chứng minh tam giác MHC cân và tính tổng \(\frac{AM}{AD}+\frac{BN}{BE}+\frac{CP}{CF}\)
Cho tam giác nhọn ABC có ba đường cao AD, BE, CF đồng quy tại H. Gọi M, N, P, Q lần lượt là hình chiếu vuông góc của D trên AB, AC, BE, CF.
a) Chứng minh EF // MN
b) Chứng minh MP + NQ = EF
c) Đường thẳng PQ cắt DE, DF lần lượt tại K, I và AD cắt EF, MN lần lượt tại G, O. Giả sử O là trung điểm MN. Khi đó tứ giác GIDK là hình gì?
cho tam giác ABC nhọn nội tiếp đường tròn O. gọi H là giao diểm của 3 đường cao AD,BE,CF của tam giác ABC
A/ gọi M,N lần lượt là giao điẻm của BE và .chứng minh OA vuông góc MN và AH.AD+BH.BE=AB^2
thank
cho tam giác abc nhọn, không cân (ab< ac), các đường cao ad,be,cf cắt nhau tại trực tâm h . gọi m,i lần lượt là trung điểm của bc, ah. đường thẳng qua i vuông góc với am, cắt ef tại s. 1) chứng minh ie vuông góc với me. 2) chứng minh sa song song với bc. 3) gọi p,q lần lượt là giao điểm của si với be,cf.chứng minh i là trung điểm của pq.