Cho tam giác nhọn ABC. Các đường cao BE, CF cắt nhau tại điểm H.
a) C/m: AH vuông góc với BC
b) Đường thẳng vuông góc với AB tại B cắt đường thẳng vuông góc với AC tại C ở điểm M. Gọi I là trung điểm BC. C/m: tam giác BIH = tam giác CIM và 3 điểm H, I, M thẳng hàng
c) Gọi O là điểm cách đều 3 đỉnh của tam giác ABC. C/m: AH // OI
a: Xét ΔABC có
BE,CF là đừog cao
BE cắt CF tại H
=>H là trực tâm
=>AH vuông góc BC
b: Xét tứ giác BHCM có
BH//CM
BM//CH
=>BHCM là hình bình hành
=>BC cắt HM tại trung điểm của mỗi đường
=>H,I,M thẳng hàng
Xét ΔBIH và ΔCIM có
IB=IC
IH=IM
BH=CM
=>ΔBIH=ΔCIM