Cho tam giác MNP vuông tại M. MH là đường cao. Kẻ HK vuông góc với MN tại K. HQ vuông góc với MP tại Q. Chứng Minh
MH^2=NH x HP
Cho tam giác MNP vuông tại M có đường cao MH; kẻ HD vuông góc với MN (D ∈ MN), HE vuông góc với MP (E ∈ MP)
a) Chứng minh tứ giác MEDH là hình chứ nhật
b) Gọi O là trung điểm của MH, chứng minh DO=OE
c) Gọi I, K lần lượt là trung điểm của NH và HP, chứng minh DI//EK
Cho tam giác abc vuông tại a, đường cao ah. Gọi m,n theo thứ tự là chân đường vuông góc kẻ từ h đến ac,ab. Đường thẳng mn cắt ah tại i, cắt cb tại e. Gọi O là trung điểm bc. Kẻ hd vuông góc ae. cmr
a) I là trực tâm tam giác aoe
b) góc bdc=90 độ
giúp mh nhanh nha cb, tuy là bt toán 8 nhưng biết thì trả lời giúp mh nha( quan trọng là câu b nha)
THANKS NHÌU Ạ =))
Cho tam giác ABC vuông tại A (AC > AB) đường cao AH (H ∈ BC).Trên tia đối của tia HB lấy điểm D sao cho HB = HD. Kẻ DE vuông góc với AC tại E và HK vuông góc với AC tại K. Gọi M là trung điểm của DC. Chứng minh góc HEM vuông
Bài 1 :Cho tam giác ABC nhọn, các đường cao BH,CK. Gọi D và E lần lượt là chân đường vuông góc kẻ từ B,C xuống đường thẳng HK. Chứng minh DK=EH
Bài 2 : Cho tam giác ABC vuông tại A, đường cao AH.Qua trung điểm M của cạnh AC, kẻ MN vuông góc với BC tại N. Gọi K là trung điểm AH. Chứng minh BK vuông góc với AN
Cho tam giác MNP vuông tại M ( MN > MP ), đường cao MH. Từ H kẻ HA vuông góc với MP ( A ϵ MP ), HB vuông góc với MN ( B ϵ MN ).
a) Tứ giác HAMB là hình gì? vì sao?
b) Gọi e là trung điểm của HN. Chứng minh EB vuông góc với AB
Cho tam giác ABC vuông tại A, đường cao AH. Gọi M, N theo thứ tự
là chân các đường vuông góc kẻ từ H đến AC, AB. Đường thẳng MN cắt AH tại I và cắt
CB tại E. Gọi O là trung điểm của BC. Kẻ HD vuông góc với AE (D ∈ AE). Chứng minh
rằng:
a) I là trực tâm của tam giác AOE.
b) BDC = 90◦