Ta có:
\(\widehat{NMK}=\widehat{MPN}+\widehat{MNK}\left(=90^0\right)\)
Vì MI là tia phân giác \(\widehat{KMP}\)
=> \(\widehat{NMI}=\widehat{NMK}+\widehat{KMI}=\widehat{MPN}+\widehat{IMP}=\widehat{MIN}\)
=> Tam giác NMI cân tại N
=> NM = NI ( đpcm )
Ta có:
\(\widehat{NMK}=\widehat{MPN}+\widehat{MNK}\left(=90^0\right)\)
Vì MI là tia phân giác \(\widehat{KMP}\)
=> \(\widehat{NMI}=\widehat{NMK}+\widehat{KMI}=\widehat{MPN}+\widehat{IMP}=\widehat{MIN}\)
=> Tam giác NMI cân tại N
=> NM = NI ( đpcm )
Cho tam giác MNP vuông tại M.Kẻ MH vuông góc với NP(K thuộc NP).Tia phân giác của góc PMK cắt NP tại I.Chứng minh NM=NI
Cho AMNP vuông tại M. Kẻ MK ⊥ NP (K ∈ NP). Tia phân giác của góc PMK cắt NP tại I. Chứng minh NM = NI
Cho tam giác AMNP vuông tại M. Kẻ M K ⊥ N P ( K ∈ N P ) . Tia phân giác của góc PMK cắt NP tại I. Chứng minh N M I ^ = N I M ^
Cho tam giác MNP vuông tại M, vẽ tia phân giác NI. Kẻ ME vuông góc với NI, đường thẳng ME cắt NP ở K. Đường thẳng qua M và song song với IK cắt NI ở H, cắt NP ở F
Chứng minh a) NM=NP
b) Mf vg góc với NP
c KH//MP
Cho tam giác MNP vuông tại M (MN < MP). Vẽ tia phân giác NI (I thuộc MP), từ I kẻ IK vuông góc với NP tại K. Gọi Q là giao điểm của tia KI và tia NM. Chứng minh rằng: 1) ANMK là tam giác cân 2) ANQP là tam giác cân 3) MK // QP
cho tam giác mnp vuông tại m trên np lấy e sao cho ne=nm qua e kẻ kẻ đường thẳng vuông góc với np cắt mp ở i chứng minh tam giác mni=tam giác eni,c/m tam giác ime cân, so sánh im và ip,kẻ đường cao mk của tam giác mnp c/m me là tia p/g cua góc kmp , kẻ ph vuông góc với ni tại h cắt nm kéo dài ở f c/m E,I,F thẳng hàng
Cho tam giác MNP vuông tại M, có NP = 10cm, MN = 8cm. Kẻ đường phân giác NI ( I thuộc MP). Kẻ ID vuông góc với NP ( D thuộc NP)
a, Tính MP
b. chứng minh tam giác MNI = tam giác DNI
c, chứng minh NI là đường trung trực của MD
d. Gọi E là giao điểm của NM và DI . Chứng minh NI vuông góc với EP
cho tam giác MNP vuông tại M, đường phân giác ND( D thuộc MP). Kẻ ME vuông góc với ND (E thuộc ND). ME cắt NP tại K. Chứng minh a) DK vuông góc với NP b) Kẻ MH vuông góc với NP( H thuộc NP). Gọi I là giao điểm của MH và ND. Chứng minh KI song song với MP
CHO TAM GIÁC MNP VUÔNG TẠI N(NM<NP), TIA PHÂN GIÁC CỦA GÓC M CẮT CẠNH NP TẠI K.TRÊN MP LẤY ĐIỂM I SAO CHO MN=MI
A) CHỨNG MINH TAM GIÁC MNK = TAM GIÁC MIK. SUY RA TAM GIÁC NKI CÂN
B) TIA MN CẮT TIA IK TẠI E. CHỨNG MNH MK VUÔNG GÓC EP