a: Xét ΔMNP vuông tại M có MH là đường cao
nên \(NH\cdot PH=MH^2\left(1\right)\)
Xét ΔNHM vuông tại H có HE là đường cao
nên \(ME\cdot MN=MH^2\left(2\right)\)
Từ (1) và (2) suy ra \(NH\cdot PH=ME\cdot MN\)
b: Xét ΔMNP vuông tại M có MH là đường cao
nên \(\left\{{}\begin{matrix}MP^2=PH\cdot PN\\NM^2=NH\cdot NP\end{matrix}\right.\)
=>\(\dfrac{PH\cdot PN}{NH\cdot NP}=\dfrac{MP^2}{MN^2}\)
=>\(\dfrac{NH}{PH}=\left(\dfrac{MN}{MP}\right)^2\)
c: ΔMHP vuông tại H có HF là đường cao
nên \(MF\cdot MP=MH^2\)
mà \(ME\cdot MN=MH^2\)
nên \(MF\cdot MP=ME\cdot MN\)
=>\(\dfrac{MF}{ME}=\dfrac{MN}{MP}\)
Xét ΔMFN vuông tại M và ΔMEP vuông tại M có
\(\dfrac{MF}{ME}=\dfrac{MN}{MP}\)
Do đó: ΔMFN đồng dạng với ΔMEP
=>\(\widehat{MNF}=\widehat{MPE}\)