Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Thu Hà

Cho tam giác MNP cân tại M , vẽ MH vuông góc với NP

a ) Chứng minh : Tam giác MHN = Tam giác MHP

b ) Chứng minh MH là phân giác của tam giác MNP

c ) Tính MH nếu MN = 10 cm , NP = 12 cm

d ) Vẽ đường thẳng vuông góc với MN tại N và đường thẳng vuông góc với MP tại P , hai đường thẳng này cắt nhau tại K . Chứng minh M , K , H thẳng hàng .

Linh Thuy
9 tháng 4 2017 lúc 20:35

a) xét tam giác MHN và tam giác MHP có

         \(\widehat{MHN}\) = \(\widehat{MHP}\)(= 90 ĐỘ)

         MN = MP ( tam giác MNP cân tại M)

         MH chung

=> tam giác MHN = tam giác MHP (cạnh huyền cạnh góc vuông)

b) vì tam giác MHN = tam giác MHP (câu a)

=> \(\widehat{M1}\)\(\widehat{M2}\)(2 góc tương ứng)

=> MH là tia phân giác của \(\widehat{NMP}\)

Vic Lu
9 tháng 4 2017 lúc 20:43

bạn tự vẽ hình nhé

a.

vì tam giác MNP cân tại M=> MN=MP và \(\widehat{N}\)=\(\widehat{P}\)

Xét tam giác MHN và tam giác MHP

có: MN-MP(CMT)

 \(\widehat{N}\)=\(\widehat{P}\)(CMT)

MH là cạnh chung

\(\widehat{MHN}\)=\(\widehat{MHP}\)=\(^{90^0}\)

=> Tam giác MHN= Tam giác MHP(ch-gn)

=> \(\widehat{NMH}\)=\(\widehat{PMH}\)(2 GÓC TƯƠNG ỨNG)          (1)

và NH=PH( 2 cạnh tương ứng)

mà H THUỘC NP=> NH=PH=1/2NP                               (3)

b. Vì H năm giữa N,P

=> MH nằm giữa MN và MP                                           (2)

Từ (1) (2)=> MH là tia phân giác của góc NMP

c. Từ (3)=> NH=PH=1/2.12=6(cm)

Xét tam giác MNH có Góc H=90 độ

=>\(MN^2=NH^2+MH^2\)( ĐL Py-ta-go)

hay \(10^2=6^2+MH^2\)

=>\(MH^2=10^2-6^2\)

\(MH^2=64\)

=>MH=8(cm)


Các câu hỏi tương tự
Tuấn anh Lê
Xem chi tiết
Thu Ngân Lưu
Xem chi tiết
Lê Linh Chi
Xem chi tiết
nguyễn thị thu trang
Xem chi tiết
Nguyễn Đăng
Xem chi tiết
Đỗ Bảo An
Xem chi tiết
Bui Ngoc Linh
Xem chi tiết
Phạm Thị Khánh An
Xem chi tiết
Nguyễn Thành Nam
Xem chi tiết