Xét ΔABH vuông tại H(gt)
=> \(AH^2=AE\cdot AB\) (1)
Xét ΔAHC vuông tại C(gt)
=>\(AH^2=AF\cdot AC\) (2)
Từ (1)(2) suy ra:
AE.AB=AF.AC
b) Xét ΔABH vuông tại H(gt)
=> \(AB^2=AH^2+BH^2=3^2+4^2=9+16=25\)
=>AB=25
Áp dụng hệ thức ta có:
\(AH^2=AE\cdot AB\)
=> \(AE=\frac{AH^2}{AB}=\frac{4^2}{5}=\frac{16}{5}\)
Có: AB=AE+BE
=>BE=AB-AE= \(5-\frac{16}{5}=\frac{9}{5}\)